

CANFDDTU-400EWGR User Manual

CANFD Bus Message Recording and Wireless Data Transmission Equipment

UM01010101 1.1 Data: 2022/09/29

	Category	Contents
ſ	Keywords	CANFD-BUS, message recording, Ethernet, WiFi
Ī	Abstract	Product User Guide

CANFDDTU-400EWGR

CANFD Bus Message Recording and Wireless Data Transmission Equipment Series Products

User Manual

Revision History

Version Date Description		Description
V1.1	2020/04/13	Created
V1.1	2022/09/29	Modify power supply scope and company template

Contents

1. Product	t Introduction	
1.1	Product Overview	1
1.2	Features	1
1.3	Typical Applications	2
2. Product	t Specifications	
2.1	Electrical Specifications	3
2.2	Operating Temperature	3
2.3	Protection Level	3
3. Mechai	nical Dimensions4	
4. Hardwa	are Interfaces6	
4.1	Panel Layout	6
4.2	Indicators	6
4.3	Buttons	7
4.4	Power Interface	8
4.5	CANFD-bus Interfaces	8
4.6	Switching Value Input Interface	10
4.7	Switch Output Interfaces	11
4.8	LIN-Bus Interface	12
4.9	USB Interface	13
4.10	Ethernet Interface	13
4.11	Vehicle Ethernet Interface	13
4.12	SD Card Interface	14
4.13	4G Interface	14
4.14	GPS Interface	15
4.15	WiFi Interface	15
5. Quick (Guide17	
5.1	Device Connection	17
5.2	Configuration Tool Installation	
5.3	Device Search	
5.4	Basic Configurations	18
5	.4.1 Modifying Configurations	
(D' 1 '	21	

1. Product Introduction

1.1 Product Overview

In CANFD bus troubleshooting, the biggest difficulty is occasional faults, which makes engineers or even CANFD experts unable to accurately identify the fault cause. For example, the pitch system of the wind turbine had a CANFD data transmission interruption in 72 hours; the dashboard of a new energy vehicle appeared "blank" once during a 10,000 km drive, but this fault could not reoccur; the high-speed train experienced an emergency deceleration due to abnormal CANFD communication during a 2,000 km journey. These occasional CANFD communication exceptions have troubled engineers like time bombs. If one CANFD bus data recorder is installed on an occasion prone to faults, it is equivalent to a "black box" to record CANFD data, which helps analyze the fault cause.

Guangzhou ZLG Electronics Co., Ltd., as a leading manufacturer of the domestic CANFD bus, has developed CANFDDTU series products for troubleshooting CANFD buses, which can record CANFD messages offline. The products can easily complete the message recording and on-site monitoring for applications such as vehicles, ships, elevators, wind turbines, and construction machinery.

CANFDDTU-400 series products are storage-type 4-channel CANFD bus data recorders, which can run independently from PC and store CANFD message data for a long time, which facilitates analysis and troubleshooting. The recorder can send the recorded data to a PC via an SD memory card on the Ethernet. After format conversion of the raw data, users can analyze and evaluate the recorded data offline by using CANFDoe, INCA, and CANFDScope.

1.2 Features

Table 1.1 Product features

	Number of channels: four user-configurable CANFD channels	
CANFD channel	Interface type: high-speed CANFD	
	Baud rate: any programmable value between 40 Kbps and 5 Mbps	

CANFD Bus Message Recording and Wireless Data Transmission Equipment Series Products

	Maximum receive data flow: 4,000 frames/s(One way)				
	Surge protection: 1 kV (Class B)				
	Isolation voltage: 2,500 V				
Standard Ethernet interface	100M/1000M adaptive				
Vehicle Ethernet interface	Meet 100base-T1, OPEN Alliance BroadR-Reach specification				
Wireless 4G transmission	Support Unicom, Telecom, Mobile 4G				
Digital output	Two digital outputs				
Digital input	Two digital inputs				
LIN channel	Four independent LIN channels				
	Storage Capacity: supports SD memory cards of a maximum of 64 GB				
	Storage mode: all storage, timing storage				
Message recording and	Full mode: rolling record, full stop				
storage	Trigger mode: conditional trigger, external trigger				
	Find and location: Manual time stamping				
	Data export: supports multiple data formats, such as .frame, .csv, .txt, and .asc for software analysis				
Real-time clock	Built-in rechargeable lithium battery				
	Supports the general configuration function library, which helps users develop application programs				
Software resources	with VC, VB, Delphi and C++ Builder				
	Supports the configuration tool CANDTU				
Power supply voltage	DC 9 - 36V				
Power consumption	8.6W(Max)				
Range of temperature	Operating temperature: -40°C to +85°C				
Nange of temperature	Storage temperature: -40°C to +85°C				
External dimension	179 mm x 131.5 mm x 50.4 mm				

1.3 Typical Applications

- High-speed train operation fault detection and troubleshooting
- Subway train operation fault detection and troubleshooting
- Train control system operation fault detection and troubleshooting
- Wind turbine CANFD communication fault detection
- Multi-channel CANFD communication recording and fault analysis for traditional vehicles and new energy vehicles
- Ship CANFD communication fault detection and troubleshooting
- Coal mine CANFD communication fault analysis
- Elevator operation fault detection and troubleshooting
- Construction machinery operation fault detection and troubleshooting
- Aerospace vehicles and ancillary equipment detection and troubleshooting

2. Product Specifications

2.1 Electrical Specifications

Table 2.1 Product features

Item	Conditions		Rating		
item	Conditions	Minimum	Typical Value	Maximum	Unit
Operating voltage	DC	9	24	36	V
Power consumption		4.2	5.1	8.6	W

2.2 Operating Temperature

Table 2.2 Operating temperature

Parameter Name		Linit		
Farameter Name	Minimum	Typical Value	Maximum	Unit
Operating temperature	-40	-	85	°C
Storage temperature	-40	-	85	°C

2.3 Protection Level

Warning:Operation of this equipment in a residential environment could cause radio interference.

Table 2.3 Protection level-electrostatic discharge immunity test (IEC61000-4-2)

Interface	Test Level	Test Voltage (kV)	Test Result	Remarks
Power supply	Level 4	6	Class A	Contact discharge
CANFD bus	Level 4	6	Class A	Contact discharge
Ethernet	Level 4	6	Class A	Contact discharge
Buttons, Indicators	Level 4	15	Class A	Air discharge

Table 2.4 Protection level-electrical fast transient pulse group immunity test (IEC61000-4-4)

Interface	Test Level	Test Voltage (kV)	Test Result	Remarks
Power supply	Level 3	2	Class A	Capacitive coupling
CANFD bus	Level 3	1	Class B	Capacitive coupling
Ethernet	Level 3	2	Class A	Capacitive coupling

Table 2.5 Protection level-surge (impact) test (IEC61000-4-5)

Interface	Test Level	Test Voltage (kV)	Test Result	Remarks
Davier avente	Level 3	1	Class A	Line-line
Power supply	Level 3	2	Class A	Line-ground
CANED hors	Level 3	1	Class B	Line-line
CANFD bus	Level 3	2	Class B	Line-ground
Cth a wa at	Level 3	1	Class A	Line-line
Ethernet	Level 3	2	Class A	Line-ground

3. Mechanical Dimensions

The mechanical dimensions are shown in the following figure (unit: mm)

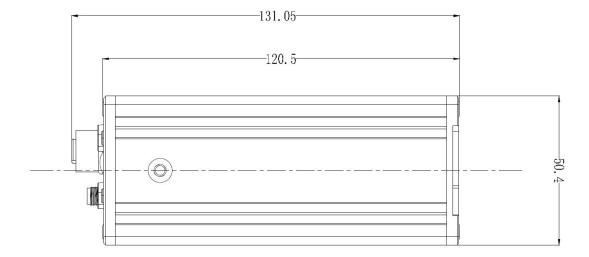


Figure 3.1 Host dimensions diagram 1

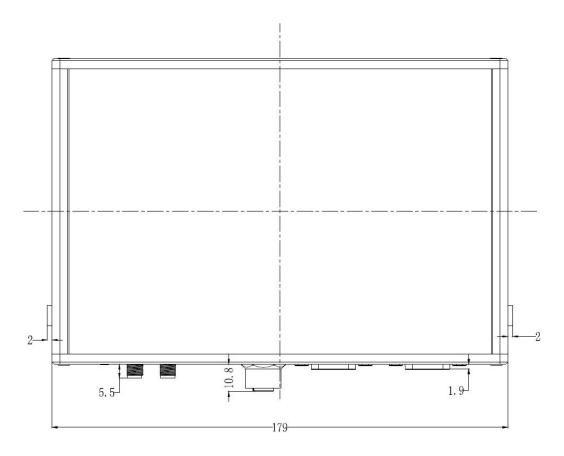


Figure 3.2 Host dimensions diagram 2

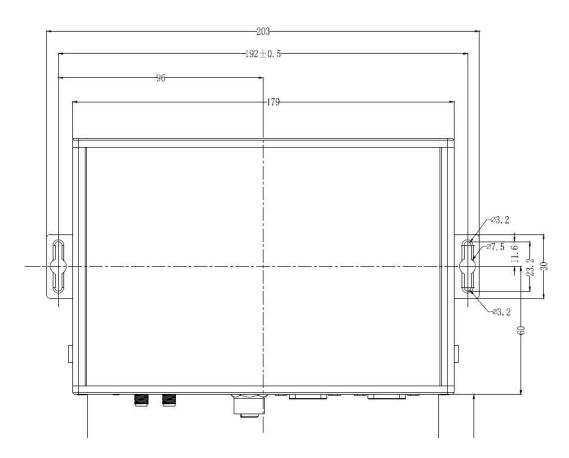


Figure 3.3 Installation method

4. Hardware Interfaces

This section describes the hardware interfaces of CANFDDTU-400 series devices.

4.1 Panel Layout

Figure 4.1shows the panel layout.

Figure 4.1 Panel layout

4.2 Indicators

Table 4.1 LED indicators

Silkscreen	Function	Status	Status Description	Flash Description
PWR	Power indicator	Light off	The device is not powered on	-
PVVK	Power indicator	Red	The device is powered on properly	-
		Green heartbeat	System rupping	100 ms cycle, after ON twice,
SYS	System indicator	Green nearlbear	System running	wait for 500 ms
313	System indicator	Always red	Device reset and restart	-
		Flashing red light	Card removed not properly	Flash at an interval of 200 ms
	Ethernet indicator	Light off	Ethernet no connected	-
		Green normally on	Ethernet connected	-
LAN0		Green flashing	The application has data	Flash at an interval of 200 ms
			transmission and reception	
		Flash in red	Received data parsing error	Flash at an interval of 200 ms
LAN1	Vehicle Ethernet	Light off	Ethernet no connected	-

	Indicator	Green normally on	Ethernet connected	-
		Green flashing	The app has data transfer	200 ms periodic blink -
		Light off	Channel not open	-
		Green normally on	Channel open	-
CAN0~	CAN channel	Green flashing	The CAN channel sends and	Flash at an interval of 200 ms
CAN3	indicator		receives data properly	
		Flash in red	CAN bus error	Flash at an interval of 200 ms
		Light off	No record	-
DEO		Continuous green light	The recording status is normal	-
REC	Record indicator	Green flashing light	Recording/formatting SD card	Flash at an interval of 200 ms
		Flashing red light	SD card abnormal	Flash at an interval of 200 ms
	4G indicator	Light off	Not started	-
		Continuous green light	4G connection normal	-
4G		Green flashing light	Data communication	Flash at an interval of 200 ms
		Continuous red light	No connection	-
		Flashing red light	No SIM card	Flash at an interval of 200 ms
	GPS indicator	Light off	Not started	-
GPS		Continuous green light	Connection normal	-
		Green flashing light	Connecting	Flash at an interval of 200 ms
		Light off	Not started	-
		Continuous green light	AP mode	-
WiFi	WiFi indicator	Green flashing light	Station connecting	Flash at an interval of 200 ms
		Green indicator	Station connected	The heartbeat flashes with the
		heartbeat		SYS indicator

4.3 Buttons

The device provides two buttons. One is a trigger button, with the silkscreen "Trigger". It marks the CANFD message data, so that users can locate the data recorded in the SD card. The other one is RST, used to reset the device and restore factory settings.

Table 4.2 Trigger button functions

Silkscreen	Function			
RST/DEF	Resets the device (press)			
RS1/DEF	Restores factory settings (5s)			
	Starts the firmware upgrade mode (press and hold to power on)			
Trigger	Records the text markup (press)			
	Removes the SD card (5s)			

Table 4.3 Trigger button functions

Silkscreen	Function
DOT/DEE	Resets the device (press)
RST/DEF	Restores factory settings (5s)
Trigger Starts the firmware upgrade mode (press and hold to power on)	

Records the text markup (press)
Removes the SD card (5s)

4.4 Power Interface

The rated voltage of the power input is 9-36 V DC, and the shell is marked as "F=9/-36V". The physical form of the interface is a 5.08 terminal. Table 4.4Table 4.5andTable 4.6. list the interface diagram, signal definition, and interface specifications.

Table 4.4 Power interface

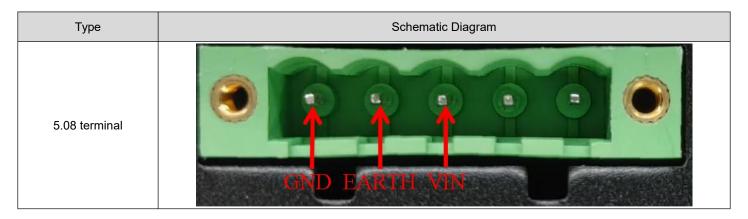


Table 4.5 5.08 terminal signal definition

Function Interface	Signal Definition	Signal Description	Interface Type
			5.08 Interface
Dower aunnly	VIN	positive electrode of power	\checkmark
Power supply	GND	negative electrode of power	√

Table 4.6 Specifications of power interfaces

Item	Conditions		Linit		
item	Conditions	Minimum	Typical Value	Maximum	Unit
Working voltage	DC	9	12	36	V
Power consumption			5.1		W

4.5 CANFD-bus Interfaces

The device provides four isolated CANFD-Bus interfaces: "CAN0", "CAN1", "CAN2", and "CAN3". The physical form of the interface is a DB9 terminal. Table 4.7, Table 4.8 and Table 4.9. list the interface diagram, signal definition, and interface specifications.

Table 4.7 Pin definitions

Туре

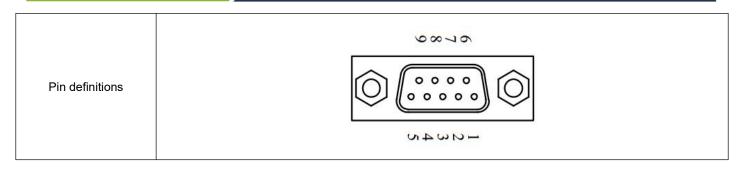


Table 4.8 Signal definitions

Function Interface	Signal Definition	Signal Description	Pin Number
	CANFD_L CANFD data transceiver differential inverted signal		2
CANFD0~CANFD3	CANFD_GND	CANFD isolation ground	3, 6
	CANFD H	CANED III	
	CANFD_H	signal	,
	CANFD_FG	Shielding ground	5
	NC	Not connected	1, 4, 8, 9

Table 4.9 CANFD-Bus interface specifications

Parameter		Minimum	Typical Value	Maximum	Unit
Communication baud rate		5k		1M	bps
Number of nodes				110	pcs
Deminent level (legie 0)	CANFDH	2.75	3.5	4.5	
Dominant level (logic 0)	CANFDL	0.5	1.5	2	
December level (legie 1)	CANFDH	2	2.5	3	
Recessive level (logic 1)	CANFDL	2	2.5	3	
Differential level	Dominant (logic 0)	1.2	2	3.1	V
Differential level	Recessive (logic 1)	-0.5	0	0.05	
Maximum withstand voltage of the bus pin	, J	-18		18	
Instantaneous voltage of the bus		-100		+100	
Isolation voltage (DC)		3500			V

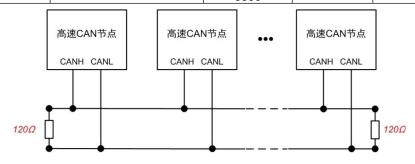


Figure 4.2 Typical network connection diagram of high-speed CANFD

Balanced transmission is adopted for the CANFD bus. According to ISO11898-2: In the high-speed CANFD, a 120 ohm terminal resistor needs to be connected to the network terminal node to eliminate signal reflection on the bus and avoid signal distortion. Figure 4.2 shows the high-speed CANFD network topology.

The device has a built-in 120 ohm terminal resistance, which can be turned on or off by using the configuration tool CANFDDTU. For operation details, see5.4.1.

Note: The bus communication distance and communication rate are related to the field application and can

be designed according to the actual application and related standards. CANFD-Bus cable can be ordinary twisted pair, shielded twisted pair or standard bus communication cable. In long-distance communication, the terminal resistance value needs to be selected according to the communication distance, cable impedance and number of nodes.

4.6 Switching Value Input Interface

The device provides 2-channel digital input. The shell is identified as "DIO(1)P(N)". The physical form of the interface is a 3.81 terminal. Table 4.10,Table 4.11, and 错误!未找到引用源。 list the interface schematic diagram, signal definition, and interface specification.

Table 4.10 DI interface

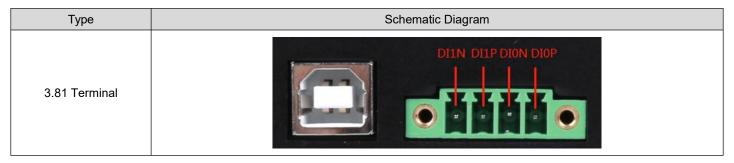


Table 4.11 OPEN, 3.81 signal definition

Function	Signal Definition	Signal Description	Interface Type	
Interface	Signal Definition	Signal Description	OPEN Interface	3.81 Interface
	DI0_P	Digital input channel 0 positive		√
DI0_N		Digital input channel 0 negative		\checkmark
DI	DI1_P	Digital input channel 1 positive		√
	DI1_N	Digital input channel 1 negative		√

Table 4.12 DI interface specifications

parameter	Conditions	Minimum	Typical Value	Maximum	Unit
Logic 0 signal	DC	0		3	V
Logic 1 signal	DC	5		24	V
Isolation voltage	Valid value		3750		V

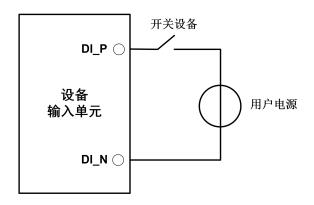


Figure 4.3 DI network connection

By using the configuration tool, the switch input interface can be configured as timing recording mode and analog key-pressing mode.

- 1) The timing recording mode is used to regularly collect the switching status of external equipment, such as valve closing and opening, motor start and stop, and contact connection and disconnection. Figure 4.3 shows the connection diagram.
- 2) The analog key-pressing mode can be used to simulate on-board buttons, including message marking, pause recording, resume recording, and user upgrades.

4.7 Switch Output Interfaces

The device provides two digital outputs. The shell is marked as "DO0(1)P(N)". The physical form of the interface is a 3.81 terminal. Table 4.13, Table 4.14, and Table 4.15 list the interface schematic diagram, signal definition, and interface specifications.

Table 4.13 DO interface

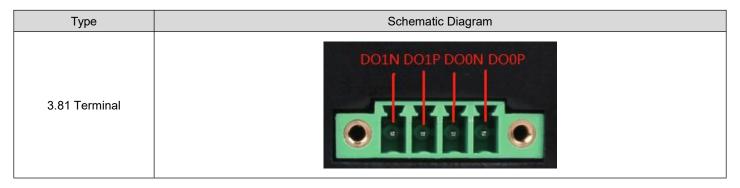


Table 4.14 OPEN, 3.81 signal definition

Function	Signal Definition	Signal Description	Interface Type	
Interface	Signal Definition	Signal Description	OPEN Interface	3.81 Interface
	DO0_P	Digital output channel 0 positive		√
DO	DO0_N	Digital output channel 0 negative		√
	DO1_P	Digital output channel 1 positive		√
	DO1 N	Digital output channel 1 negative		√

Table 4.15 DO interface specifications

Parameter	Conditions	Minimum	Typical Value	Maximum	Unit
Contact load	DC 3A, resistive			30	V
Contact load	AC 3A, resistive			250	V
Contact Resistance	DC 1A, 24V		0.1		Ω
Isolation voltage	Valid value		4000		V

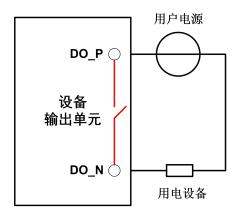


Figure 4.4 DO network connection

The switch output interface is a relay output type, and the interior is a relay contact. The output control circuit is not limited by voltage and polarity, and can be 24 V DC or 220 V AC. Since it is a dry contact output, users need an external power supply to supply power to alarm devices (such as buzzers). Figure 4.4 shows the connection.

The switch output interface is used to output the alarm signal. Through the configuration tool, configurable trigger events include record full, CAN bus error, and SD card status abnormality. In addition, the relay can be configured to be normally open or normally closed based on user needs.

4.8 LIN-Bus Interface

The device provides four independent LIN-Bus interfaces. The shell is identified as "LIN". The physical form of the interface is a 3.81 terminal. Table 4.16, Table 4.17, and Table 4.18 list the interface schematic diagram, signal definition, and interface specification.

Type Schematic Diagram

Vbat GND LIN3 LIN2 LIN1 LIN0

3.81 Terminal

Table 4.16 LIN interface

Table 4.17 OPEN, 3.81 signal definition

Function	Signal Definition	Signal Description	Interface Type	
Interface	Signal Definition		OPEN Interface	3.81 Interface
LIN	Vbat	LIN DC voltage	√	√
	GND	LIN DC GND		
	LIN	LIN bus signal	√	√
	GND	Digital ground		√

Parameter Minimum Typical Value Maximum Unit Communication baud rate 20k bps DC voltage -36 36 V LIN line Dominant output level (logic 0) 0.75 ٧ Receiver dominant level (logic 0) ٧ 2 Receiver stealth level (Logic 1)

Table 4.18 LIN-Bus interface specifications

4.9 USB Interface

The device provides one USB interface. The device communicates with the PC over the USB cable. The interface conforms to the high-speed USB2.0 protocol specification and can communicate with PCs compliant with USB1.1 and USB2.0 standards. The physical form of the interface is a Type-B USB port.

4.10 Ethernet Interface

The device provides one Ethernet interface. The physical form of the interface is RJ45 or M12 terminal, which realizes the communication between the device and the PC. The interface 100/1000M specification, interface schematic diagram and signal definition are shown in 错误!未找到引用源。.

RJ45 terminal

RX+

TX
TX+

10/100M

Table 4.19 Ethernet interface

4.11 Vehicle Ethernet Interface

The device provides one on-board Ethernet interface, which meets the OPEN Alliance BroadR-Reach specification. The physical form of the interface is the OPEN terminal, which realizes on-board Ethernet communication. This interface meets the 100M specification. Table 4.20, Table 4.21, and Figure 4.5 show the interface diagram and signal definition.

Table 4.20 Vehicle Ethernet interface

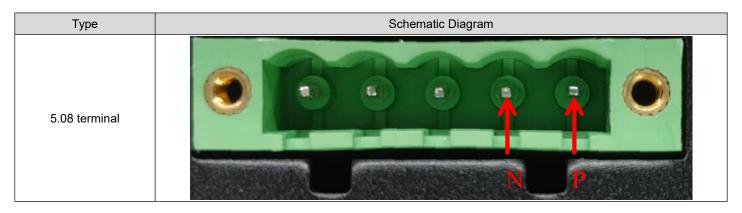


Table 4.21 Signal definition

Function Interface	Signal Definition	Signal Description	Pin Number
1 0014	Р	LAN1 data transceiver differential positive phase signal	1
LAN1	N	LAN1 data transceiver differential inverted signal	2

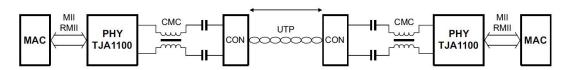


Figure 4.5 Typical network connection of on-board Ethernet

4.12 SD Card Interface

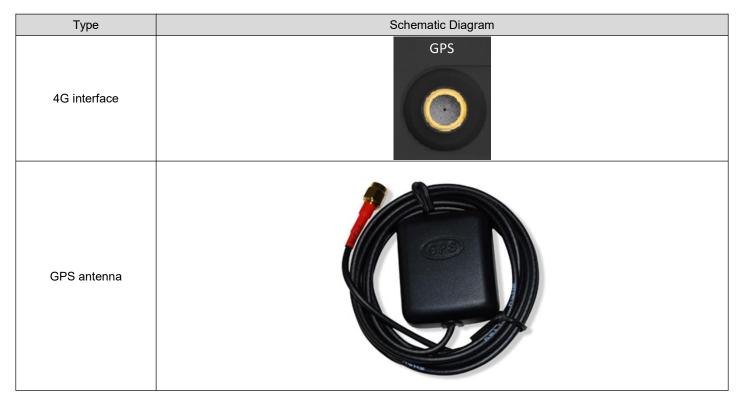
The device provides one SD card interface, which supports a maximum of 64 GB SD memory card for storing CANFD bus message data. The interface adopts a self-locking card slot, and the SD card can be locked after the card is inserted according to the direction of the shell logo to prevent accidental falling off during use. When pulling out the card, just push it inwards to eject the SD card.

4.13 4G Interface

The device provides one 4G interface. Table 4.22 lists the physical form of the interface.

Table 4.22 4G interface

Туре	Schematic Diagram	
4G interface	4G	



4.14 GPS Interface

The device provides one GPS interface. The physical form of the interface is shown in Table 4.23.

Table 4.23 GPS interface

4.15 WiFi Interface

The device provides one WiFi interface. The physical form of the interface is shown in Table 4.24.

Table 4.24 WiFi interface

Туре	Schematic Diagram
4G interface	WIFI
WiFi antenna	

5. Quick Guide

5.1 Device Connection

Connect the hardware by referring to the interface instructions in the "Hardware Interfaces" chapter, and power on the device.

5.2 Configuration Tool Installation

Double-click the "CANDTUCfgSetup_Vxx.xx.xx.exe" configuration tool installation package. Follow the installation instructions to install the configuration tool. After the installation is complete, start the "CANDTU" configuration tool.

5.3 Device Search

After starting the configuration tool, click the "Device Model" area in the upper left corner of the configuration tool to display a list of devices. Click "CANDTU-Network Device" in the list. The "Search Devices" interface appears.

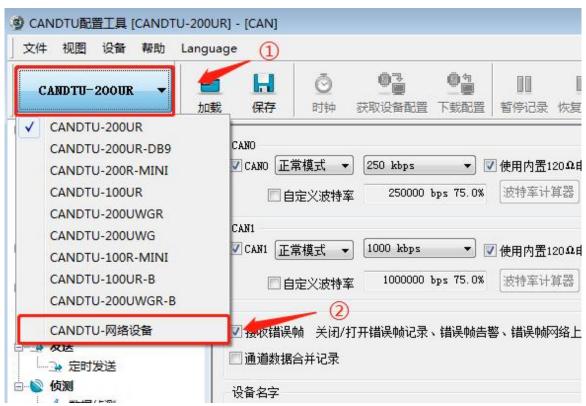


Figure 5.1 Starting the configuration tool

Figure 5.2 Searching devices

When the "Search Device" interface appears, it will automatically search for devices. If there is no device in the device list, click "Search Device" to refresh the device list. If the device cannot be found after several manual searches, try to "Bind NIC" and then manually search for the device.

After selecting the device in the device list, click "OK" to display the "Device Configuration" interface.

5.4 Basic Configurations

When using the device for the first time, configure the channel's baud rate parameter and termination resistance ¹ switch as required.

5.4.1 Modifying Configurations

In the left menu bar of the configuration tool, click "CAN (FD)" to display the CAN (FD) channel configuration interface, as shown in Figure 5.3. After clicking the corresponding channel, configure the baud rate parameters and terminal resistance control of the channel.

¹Theoretically, each CAN bus only needs two terminal resistors at the near end and the far end.

Figure 5.3 CAN (FD) channel configuration interface

After modifying the configuration parameters, click "Download Configuration" in the menu bar in the upper part of the configuration tool. Enter the password 88888 as prompted (modification is not supported). Click "OK" to start downloading the configurations, as shown in Figure 5.4. When downloading the configurations, the "Wait for device configuration to complete" interface appears, as shown in Figure 5.5. After the device is successfully configured, the interface disappears automatically.

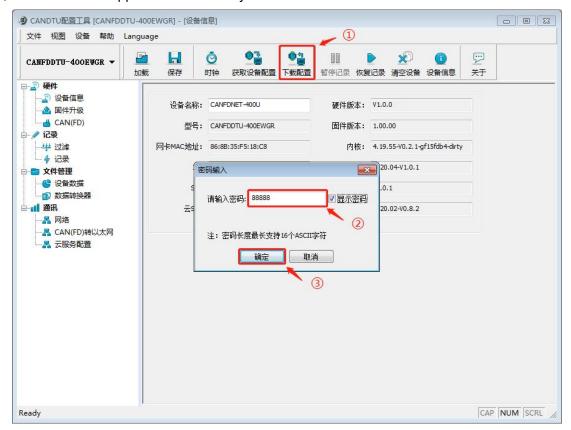


Figure 5.4 Downloading configurations

Figure 5.5 Waiting for configuration to complete

After the download is complete, click "Get Device Configuration" in the upper menu bar of the configuration tool to view the device configurations.

CANFDDTU-400EWGR

User Manual

6. Disclaimer

Based on the principle of providing better service for users, Guangzhou Zhiyuan Electronics Co., Ltd. (hereinafter referred to as "Zhiyuan Electronics") will try to present detailed and accurate product information to users in this manual. However, due to the certain timeliness of this manual, Zhiyuan Electronics cannot fully guarantee the timeliness and applicability of this document at any time. Zhiyuan Electronics shall reserve the right to update this manual without prior notice. To get the latest version, please visit the official website of Zhiyuan Electronics regularly or contact Zhiyuan Electronics. Thank you for your tolerance and support!

Dreams come true with professionalism and dedication.

Guangzhou ZLG
Electronics Co., Ltd.

For more details, please visit www.zlg.cn

Welcome to call the national service hotline 400--888--4005

