User Manual

CANScope 用户手册

CAN 总线分析仪

UM09050101 2.1 Date:2022/8/19

类别	内容
关键词	CAN 总线分析仪、故障诊断、可靠性测试
摘要	CANScope 系列 CAN 总线分析仪是一款具有排除干扰、定位故障和 可靠性测试的测试设备,可以帮助用户一站式解决 CAN 总线的相关 问题。

CAN 总线分析仪

修订历史

版本	日期	原因		
V1.00	2011/09/01	创建文档		
V1.10	2012/11/08	修改文档(软件版本号 1.3.19.5677)		
V1.20	2012/12/12	修改文档(软件版本号 1.3.20.5703)		
V1.30	2013/12/10	修改文档(软件版本号 1.4.1.6207)		
V1.40	2014/10/10	修改文档(软件版本号 1.4.1.6344)		
V1.50	2015/06/08	增加 CANScope-Basic 型号		
V1.60	2016/06/08	修改装箱单		
V1.70	2017/06/28	修改公司名称		
V1.80	2019/03/21	更新文档页眉页脚、"销售与服务网络"内容和新增"免责声明" 内容		
V1.90	2019/09/09	修改 CANTester 自动化测试软件内容		
V2.00	2021/07/22	CANTester 测试项解释内容修改及此章节细节修改		
V2.10	2022/08/19	手册模板更新		

CAN 总线分析仪

目 录

1.	关于	本文档.	
	1.1	运车	俞与存放1
		1.1.1	运输1
		1.1.2	存放1
	1.2	维持	户1
	1.3	停用	 利和处置1
	1.4	回り	收和处置 1
2.	常规	安全须	知2
	2.1	简约	介2
	2.2	安全	全操作2
	2.3	正研	角使用2
	2.4	标准	
	2.5	套任	牛保护限值2
	2.6	电》	原额定限值2
	2.7	电	气连接3
	2.8	维持	户与维修3
3.	产品	└简介	4
	3.1	关于	于本章4
	3.2	系统	充框图
	3.3	产品	品外观4
		3.3.1	接线端(背面接口)4
		3.3.2	端口(正面接口)5
	3.4	配有	牛介绍
		3.4.1	M12 通信电缆与 M12-ODB 车身诊断电缆6
		3.4.2	PORT 插头介绍
		3.4.3	CANScope-StressZ 模拟测量与干扰扩展板(选配)7
	3.5	功能	能列表10
	3.6	货物	勿清点12
4.	设备	安装	
_	4.1	软化	牛安装
5.	采甲	·介绍	
	5.1	开y 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	后采毕
	5.2	局約	发采毕
	5.3	扱う	人采毕
	5.4	測す	式采里
	5.5	大き	² 又 茶 举
	5.6	波ナ	6 米平
	5.7	眼日	31米中
	5.8	不得	及
c	5.9 电 	이어 아파 사다	11 似米中
ь.	介山	□ 呒 ሣ	
Z			©2022 Guangzhou ZHIYUAN Electronics Co., Ltd.

-CAN 总线分析仪

6.	1 界	【面样式	31
6.	2 窗	了口排列	31
	6.2.1	显示窗口	31
	6.2.2	默认布局	32
	6.2.3	平铺窗口	32
	6.2.4	浮动窗口	33
	6.2.5	其它	34
6.	3 界	¹ 面布局	34
	6.3.1	界面四周的图标	
	6.3.2	拖动到某个窗口范围内	35
	6.3.3	拖动到多个窗口之间	37
7. 视	图区快想		38
7.	1 C/	AN 报又视图区石键菜里	
7.	2 (4		
7.	3 CA	AN	
7.	4 CA	AN 波形恍图区内部上央余	
/. 0 Th	5 UA 4七人 <i>1</i> 77	AN 扳义恍图区内部工共余	
8. 川	1011111111111111111111111111111111111	二本物理巨和链路巨分析测试	
0.	」 坐	白动侦测波特索与白宝义波特索	
	8 1 2	白幼 灰树 (水平) 百足 () () () () () () () () () (
	813	眼图分析	
	814	CAN 报文收发与统计	56
	8.1.5	CAN 波形记录与分析	
	8.1.6	CAN 报文重播(录播)	69
	8.1.7	FFT 共模干扰频谱分析	70
	8.1.8	传输延迟分析与导线等效长度预估	
	8.1.9	波形边沿斜率与带宽分析	
8.	2 直	5级物理层和链路层分析测试	80
	8.2.1	CANScope-StressZ 模拟干扰与导线长度模拟	80
	8.2.2	CAN 传输阻抗测量	89
	8.2.3	波形对称性测试	91
	8.2.4	错误干扰测试(仅专业版)	91
	8.2.5	事件标记存储波形(仅专业版)	101
	8.2.6	软件眼图追踪错误根源(仅专业版)	102
8.	3 传	·输层分析测试	115
	8.3.1	总线利用率与流量分析	115
	8.3.2	报文周期统计	
	8.3.3	尽线流重压刀测试	
	8.3.4	网络共享	
	8.3.5	VU/VB/U用_伙开友	
0	ბ.პ.ნ ₄ ট	Lauview(八丌夂	
δ.	.́́́́ + /≌⁄ д/1	4m/Σ刀70/2014(ハーニー・ローン) 	120
71	C.4.1		120

 $@2022 \ {\rm Guangzhou} \ {\rm ZHIYUAN} \ {\rm Electronics} \ {\rm Co., Ltd.} \\$

CAN 总线分析仪

		8.4.2	自定义分析(DBC 导入与自定义)	129
		8.4.3	CANopen/J1939/DeviceNet/iCAN 协议分析	139
		8.4.4	帧比较分析	139
		8.4.5	触发发送(节点和网络仿真)	141
		8.4.6	规则发送(节点和网络仿真)	142
		8.4.7	C 脚本编程(节点和网络仿真)	144
9. C	ANT	ester	自动化测试软件	148
	9.1		快速入门	148
		9.1.1	硬件连接	148
		9.1.2	软件操作	149
	9.2		软件介绍	152
		9.2.1	标题栏	152
		9.2.2	主菜单栏	153
		9.2.3	事件列表	153
		9.2.4	属性视图	154
		9.2.5	报文视图	157
		9.2.6	进度条	158
		9.2.7	测试项显示区	158
		9.2.8	系统设置	159
	9.3	1	测试项解释	161
10.	技7	ド规格	<u>ع</u>	166
	10.1	-	设备主机	166
	10.2	<u>.</u>	高级功能	168
	10.3	; ;	标配收发器	168
	10.4	i :	选配件	169
11.	免責	長声り]	170

1. 关于本文档

1.1 运输与存放

1.1.1 运输

- ◆ 将设备放在其原始包装内运输。
- ◆ 运输途中避免设备受热和受潮:不要超过 0°C 至+50°C 的温度范围和 85%的最大湿度。
- ◆ 不要让设备受到撞击和重压。

1.1.2 存放

- ◆ 保存好原始包装,以后运输或设备返修时可能需要。只有原始包装才能保证设备得到妥当保护,避免其受到机械碰撞。
- ◆ 将设备存放在干燥的房间内;温度范围在0°C至+50°C之间,且最大湿度不可超过85%。
- ◆ 保护好设备,使它免于阳光直射、受热、受潮和机械碰撞。

1.2 维护

确保通风孔不受阻挡。在其它正常情况下,本设备无需维护。

1.3 停用和处置

- ♦ 关闭 Power 开关。
- ◆ 断开主电源和测试输入。
- ◆ 将插头从电源插座中拔出。
- ◆ 移除所有连接的设备。
- ◆ 确保设备安全,避免意外启动。

1.4 回收和处置

- ◆ 始终遵守关于回收和废弃物处置的适用法定条例。
- ◆ 外壳:设备外壳由金属制成,可以回收。

2. 常规安全须知

2.1 简介

本产品的使用涉及到高压,为防止电击或其它危险造成的人员伤亡,在安装、使用或维修本产品之前,请务必仔细阅读、并完全理解"常规安全须知"章节的相关内容。

2.2 安全操作

确保使用本设备的所有人均已阅读并完全理解操作手册和安全须知。

只能在特定的环境条件下使用本设备。确保实际的周围环境条件符合"技术参数"部分所述 的容许条件。

在操作期间,确保通风孔不受阻挡。

始终遵守第1章关于"运输和存放"的说明。

2.3 正确使用

确保被测信号的电压值在额定范围以内,除了测试规定信号类型以外,不可将设备用于 任何其它用途。详见本章"技术参数"部分。

设备使用不当所导致的设备损坏不在保修范围之内。

2.4 标准质保期

设备无故障运行的保质期为自购买日起一年。

2.5 套件保护限值

CAT II (300V)IEC 测量 II 类, 输入可连接到归属到 II 类过电压条件下的电源(最大 300VAC)。

香蕉插头: CAT II 1000V/Max.32A 测试钩: CAT III 1000V/Max.10A 鳄鱼夹: CAT II 300V V/Max.15A 测试探头: CAT III 1000V/Max.10A

为避免仪器损坏和电击危险,请勿超过以上定义的所有保护限值。保护限值指不超过保 护限值的情况下,分析仪所提供的保护电路,可以防止仪器损坏和电击危险。为了确保安全 操作,请勿超过相关的保护限值。

警告

如果未按照广州致远电子股份有限公司指定的方式使用测试套件,套件提供的保护功能将会削弱。另外,已损坏或磨损的测试套件可能会导致仪器损坏或人身伤害,请勿使用。

2.6 电源额定限值

(输入) I/P: 100-240V ~ 50-60Hz, 0.55A

(输出) O/P: 12V, 2A

警告

请使用广州致远电子股份有限公司的标配电源适配器或者标准的国标电源线和电源插座,保证给仪器输入一个合适的供电电压值,否则会损害仪器,并且用户可能有电击危险。 为了仪器的安全和防止电击,请务必保证接地良好。

User Manual

CANScope 用户手册

CAN 总线分析仪

2.7 电气连接

确保本设备所使用的电源线、USB 连接线和通信电缆,以及与设备一起使用的所有配件干净且能够正常工作。

安装设备时要确保其电源线始终可以伸及,以便断开连接。 如果设备外壳或某个操作原件损坏,请勿使用设备。

2.8 维护与维修

请勿打开设备外壳,只有经过培训的合格维修人员才可以拆除仪器外壳。 请勿擅自修理和更换设备中的任何零部件。

受损或故障设备,请联系广州致远电子股份有限公司进行处理。

 $@2022 \mbox{ Guangzhou ZHIYUAN Electronics Co., Ltd.}$

3. 产品简介

3.1 关于本章

本章节对 CANScope 的接线端和端口进行概述,其中包含通信电缆和测试套件。

3.2 系统框图

图 3.1 系统连接示意图

- ◆ USB连接:A口接至电脑主机 USB端口,B口接至 CANScope 主机背部 USB端口。
- ◇ PORT 插头: 排插口接至 CANScope 主机 PORT 口, 电缆连接端接 M12 通信电缆 线。
- ◇ M12通信电缆连接:M12插座接至 Port 插头的电缆连接端,测试夹(CANH、CANL、 系统地)接被测信号,即 M12通信电缆的 CAN_H 信号线与被测系统的 CAN_H 信 号线相连,CAN_L 信号线与被测系统的 CAN_L 信号线相连。

电源适配器接好后,打开 CANScope 主机背后的开关按钮 ON,这时"Power"指示灯亮。 长按 CANScope 前面的软开关 2-3 秒,听到"嘀、嘀"两声,即启动 CANScope 硬件。

打开 CANScope 软件, 查看如图 3.2 所示。红色框线位置是否显示为"CANScope 在线", 如果显示为"CANScope 离线",则要检查 CANScope 驱动是否安装成功或者电源是否打开。

图 3.2 检查 CANScope 状态

3.3 产品外观

3.3.1 接线端(背面接口)

如图 3.3 所示为 CANScope 背面的接线端。表 3.1 为接线端说明列表。

图 3.3 接线端

表 3.1 接线端说明

	说明	备注
1	电源开关	ON (打开)和 OFF (关闭)
2	电源接口	Power12V DC(内正外负)
3	USB 接口	连接设备与 PC 机
4	触发输出	多仪器同步触发(工厂校准使用)
5	外部触发输入	接收外部触发信号(工厂校准使用)
6	时钟输入	外部 10MHz 时钟源(工厂校准使用)

3.3.2 端口(正面接口)

图 3.4 所示为 CANScope 正面。表 3.2 为正面说明列表。

图 3.4CANScope 正面

表 3.2 正面端口

编号	说明	备注
1	软开关按钮	长按该按钮开机或关机,开机后该按键灯呈红色,若按键 灯快速闪烁,表明供电电压不足。 当使用软开关关机时, 需要在设备和电脑连接的状态下,进行操作。
2	Power 电源指示灯	接通电源后, Power 红色灯亮

续上表

编号	说明	备注		
3	Run 运行指示灯	PC 机软件启动后,处于监听状态或工作状态时,Run 黄色灯亮		
4	USB 指示灯	USB 通讯时,蓝色灯闪。若长亮则表明仪器 USB 通讯有故障。		
5	PORT 插头	内置不同标准的 CAN 收发器,连接 M12 通信电缆。选 配的 CANScope-StressZ模拟扩展板可用于替换此插头。		

3.4 配件介绍

3.4.1 M12 通信电缆与 M12-ODB 车身诊断电缆

图 3.5 所示为 M12 通信电缆(受供货批次的不同,实物与图片可能会有差别)。表 3.3 为测试套头功能定义。

图 3.5M12 通信电缆(标配)

表 3.3 测试套头

编号	说明	备注
1	黄色香蕉头	CAN-bus 信号线——CANH
2	绿色香蕉头	CAN-bus 信号线——CANL
3	黑色香蕉头	信号地——GND
4	红色香蕉头	保留,不需要连接
5	蓝色香蕉头	屏蔽,系统电缆屏蔽层(强干扰场合需要接到屏蔽地)

如果客户需要将CANScope快捷地接入车身诊断口,可以选配 M12-OBD 车身诊断电缆, 如图 3.6 所示。

图 3.6 M12-OBD 车身诊断电缆(选配)

3.4.2 PORT 插头介绍

CANScope 系列产品为了兼容 ISO11898-1/2/3/4/5 标准,设计了 4 款 PORT 头,分别支持 4 种不同的 CAN 收发器,客户可以根据实际系统选择不同 PORT 头。如图 3.7 所示:

图 3.7 PORT 头

PORT 头型号如表 3.4 所列:

表 3.4 PORT 插头型号说明

编号	型号	说明	
1	CANScope-P8251T(标配)	通用 CAN 收发器 PORT 头,波特率为 5K-1M bps	
2	CANScope-P1040T(标配)	高速 CAN 收发器 PORT 头,用于大于 20Kbps 波特率的系统,最高可达 1Mbps	
3	CANScope-P1055T(选配)	容错 CAN (又称低速 CAN)收发器 PORT 头, 波特率小于 125Kbps,注意使用此 PORT 头,必 须将黑色香蕉头的信号地与被测系统的信号地 相连	
4	CANScope-P7356 (选配)	单线 CAN 收发器 PORT 头,波特率小于 83.3Kbps,注意使用此 PORT 头,必须将黑色香 蕉头的信号地与被测系统的信号地相连	

3.4.3 CANScope-StressZ 模拟测量与干扰扩展板(选配)

为了增强对 CAN-bus 模拟测量与干扰功能,广州致远电子在 CANScope 系列基础上研发了一款扩展板,如图 3.8 所示:

图 3.8 CANScope-StressZ 模拟测量与干扰扩展板(选配)

CANScope-StressZ内部集成了 CAN 总线压力测试模块和网络线缆分析模块。

※压力测试模块包括模拟干扰(数字干扰在 CANScope-Pro 已标配), CAN-bus 应用终端的工作状态模拟及错误能力模拟。可以在物理层上进行 CAN 总线短路、总线长度模拟、总线负载变化以及终端电阻匹配等多种测试,可以有效地评估出一个系统在信号干扰或失效的情况下是否仍能稳定可靠地工作。

※网络线缆分析模块具有无源二端网络的阻抗测量分析能力。可以测试导线在不同频 率下的匹配电阻、寄生电容。

两个模块联合使用可以帮助用户快速而准确地发现并定位错误,完成对节点的性能评估与验证,大大缩短开发周期,方便实现网络系统稳定性、可靠性、抗干扰测试和验证等复杂工作,并且内部已经集成了高速 CAN 收发器和容错 CAN 收发器,可以轻松完成对应 CAN 系统的模拟测量与干扰工作,是 CAN-bus 网络测试工程师的好帮手。如图 3.9 所示,是 CANScope-StressZ 与 CANScope 设备连接后的测量连接图。

图 3.9 CANScope-StressZ 接线图

其端口功能说明,如表 3.5 所列:

CAN 总线分析仪

表 3.5 CANScope-StressZ 功能说明

编号	说明	备注	
1	CAN IN	测量接入点。即软件中 CAN _H 和 CAN _L 位置	
2	CAN OUT	被测系统接入点。即软件中 CAN OUT 位置	
3	Vdis-	外部负电压干扰接入点。即软件中 V _D -或者 Vdis-位置	
4	GND	信号地。与 CANScope 信号地连接,此时的被测设备信号地要连接在此处,M12线上的信号地无效	
5	Vdis+	外部正电压干扰接入点。即软件中 V _D +或者 Vdis+位置	

CAN 总线分析仪

3.5 功能列表

模块	功能项	CANS cope-Basic 基本版	CANS cope-S tandar d 标准版	CANScope-Pro 专业版
	测量通道	1个	1个	1个
	USB 通信接口	480M bp s	480M bps	480Mbps
	示波器采样率	-	100MHz	100MHz
	示波器存储容量	-	2K	8K
	波形存储容量	-	512MB	512MB
	垂直测量范围	-	1V-50V	1V-50V
	实时示波器	-	支持	支持
硬件基本功能	数学差分	支持	支持	支持
	硬件差分(隔离)	支持	支持	支持
	报文发送	支持	支持	支持
	任意序列发送	支持	支持	支持
	终端电阻开关	支持	支持	支持
	自动量程调整	-	支持	支持
	只听与应答模式切换	支持	支持	支持
	自动侦测波特率	支持	支持	支持
	硬件眼图	-	支持	支持
	网络阻抗分析	-	不支持	支持(需要模拟扩 展板)
硬件扩展功能	内部外部模拟干扰	-	不支持	支持(需要模拟扩 展板)
	数字干扰	不支持	不支持	支持
	事件标记	不支持	不支持	支持
	采样点测试	不支持	不支持	支持

表 3.6 CANScope 标准版与专业版产品型号功能列表

 $\textcircled{\sc c}2022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

模块	功能项	CANS cope-Basic 基本版	CANS cope-S tandard 标准版	CANS cope-Pro 专业版
	位宽度容忍测试	不支持	不支持	支持
	对称性测试	不支持	不支持	支持
硬件扩展功能	终端电阻可调	不支持	不支持	支持(需要模拟 扩展板)
	模拟电阻电容可调 (线缆长度模拟)	不支持	不支持	支持(需要模拟 扩展板)
	SDK 二次编程开放	支持	支持	支持
	帧统计	支持	支持	支持
	FFT 统计	支持	支持	支持
	延时统计	支持	支持	支持
	流量分析	支持	支持	支持
	数据比较	支持	支持	支持
	触发发送	支持	支持	支持
	C脚本编程	支持	支持	支持
扒忤切胞	数据导出	支持	支持	支持
	总线利用率	支持	支持	支持
	报文重播	支持	支持	支持
	高层协议分析	支持	支持	支持
	自定义协议分析	支持	支持	支持
	网络共享	支持	支持	支持
	DBC 文件导入解析	支持	支持	支持
	软件眼图	-	不支持	支持

续上表

CAN 总线分析仪

3.6 货物清点

在使用分析仪之前,请盘点表 3.7 下列的清单,确保货物完整。

表 3.7 标配件

序 号	名 称	数量	单位	备注
1	CANScope 主机	1	石	标准版为 CANScope-Standard 专业版为 CANScope-Pro
2	P8251T Port 插头	1	只	通用 CAN、支持 5K 以上波特率
3	P1040T Port 插头	1	只	高速 CAN、支持 20K 以上波特率 (车辆专用)
4	12V, 2A 开关电源适配器	1	只	内正外负
5	M12 通信电缆	1	条	
6	M12连接线	1	条	
7	2mm 测试勾	5	个	
8	USB 通讯电缆	1	条	
9	自制鳄鱼夹 DC 电源线	1	条	
10	产品光盘	1	张	
11	《售后服务指南》	1	份	
12	合格证	1	张	
13	干燥剂	1	包	
14	国标电源线	1	条	
15	校准证书	1	份	

 $@2022 \; \mbox{Guangzhou} \; \mbox{ZHIYUAN} \; \mbox{Electronics Co., Ltd.}$

4. 设备安装

4.1 软件安装

1. 启动安装程序

获取安装文件,用鼠标"双击"安装文件图标如图 4.1 所示,启动安装程序,如图 4.2 所示。

图 4.1CANScope 软件安装文件

图 4.2 CANScope 安装向导_开始安装

单击【下一步】按钮,出现设置安装目录界面,如图 4.3 所示。

2. 设置安装目录

图 4.3 CANScope 安装向导_安装目录

默认安装目录为"C:\Program Files \zhiyuan\CANScope",可以自定义安装目录,设置好 安装目录后,单击【下一步】按钮,出现如图 4.4 所示窗口。

CAN 总线分析仪

3. 设置开始菜单

· 予 安装向导 - CANScope
选择开始菜单文件夹 把程序快捷方式放到哪里 ?
安装向导将在以下开始菜单文件夹中创建程序快捷方式。 点击"下一步"进入下一步。如果你要选择不同的文件夹,请点击"浏览"。 zhiyuan\CANScope
< 上一步 (8) ▶ 取消

图 4.4 CANScope 安装向导_开始菜单

设置软件附加在"开始菜单"的位置,默认位置为"zhiyuan\CANScope",可以自定义开始 菜单位置,然后单击【下一步】按钮,出现如图 4.5 所示窗口。

4. 设置桌面图标

」 	
选择附加任务 要执行哪些附加任务 ?	
请选择在安装(ANScope 期间安装向导要执行# 步"。 附加图标: ☑ 创建桌面图标 ⑪)	的附加任务,然后点击"下一
(〈上一步)	B) 下一步 08) > 取消

图 4.5 CANScope 安装向导_桌面图标

勾选【创建桌面图标】按钮,可在桌面添加访问软件的快捷方式图标,然后单击【下一步】按钮,出现如图 4.6 所示窗口。

5. 准备安装

·····································	
准备安装 安装向导现在准备开始安装 CANScope⊙	
点击"安装"继续安装,如果你想要查看或者更改设置请点击"上一步"	•
目标位置: C:\Program Files (x86)\zhiyuan\CANScope	*
开始菜单文件夹: zhiyuan\CANScope	
附加任务: 附加图标: 创建卓面图标:0)	
	w.
	取消

图 4.6 CANScope 安装向导_准备安装

窗口中列出了安装信息,可以通过单击【上一步】按钮对安装信息进行更改,设置完安装信息后,单击【下一步】按钮,出现如图 4.7 所示窗口。

6. 开始安装

等待软件安装完成,将出现如图 4.8 所示的安装完成界面,这时单击【完成】按钮即可 完成软件的安装。

图 4.7 CANScope 向导_正在安装

CANScope	
	完成 CANScope 安装 安装向导已完成 CANScope 的安装。可以通过选择已安装 的图标来运行应用程序。 点击"完成"退出安装。 ☑ 运行 CANScope
	完成 (7)

图 4.8 CANScope 向导_安装完成

如果在安装完成界面(如图 4.8 所示),双击桌面上的 CANScope 图标,运行软件;或 直接勾选【运行 CANScope】按钮,自动运行软件,其主界面如图 4.9 所示。

CAN 总线分析仪

User Manual

🔊 📽 🗒 🖬 🗉 💷 🔻 🛛 💷 🔻	IScope-在线
一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	界面(U) * 🥑
政府年 20 10-ps 日本の次期年 第二番目の 第二番目の 1 日本の次期年 第二番目の 1 日本の次 1 <th1< th=""> <th1<< th=""><th>篇 1 ms 編 400428583 · 2013 ① #1月展示 18393月 · 4002所 +1大田利 · 4002所 · 4002所 +1502 · 400</th></th1<<></th1<>	篇 1 ms 編 400428583 · 2013 ① #1月展示 18393月 · 4002所 +1大田利 · 4002所 · 4002所 +1502 · 400
T CAN报文 X Q 网络共享	CAN示波器 🚽 中 🗙
A / A / A / A (A) (A) (A) (A) (A) (A) (A) (A) (A) (CAN-DIFF CAN-L CAN-DIFF HODY: 20L5/dw HODY: 20L5/dw HODY: 20L5/dw HODS: 05 HODS: 05 HODS: 05 VDDY: 1V/dw VDV: 1V/dw VDV: 1V/dw
🖾 CAN波形 🗙	CAN眼图
M点火当 50ゅs 100us 150us 2200us CANH 500 ¹ / ₂	Eye Info Voltage Outality count 0 ene :4V Offect :
and the second se	

图 4.9 CANScope 安装完成界面

 $\textcircled{\sc conditions} 02022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

5. 菜单介绍

5.1 开始菜单

开始菜单包括文件、窗口、帮助3大模块,如图5.1所示。

图 5.1 开始菜单

- ◆ 打开:打开之前保存好的工程文件;
- ◆ 保存:将当前的测试数据保存为工程文件;
- ◆ 覆盖保存:覆盖保存当前工程;
- ◆ 显示窗口:显示/隐藏窗口;
- ◆ 默认布局:恢复默认窗口布局;
- ◆ 平铺窗口: 平铺所有的窗口;
- ◆ 浮动窗口:浮动显示当前的窗口;
- ◆ 窗口拍照:对窗口拍照,并保存成图片;
- ◆ 缓存位置:设置文件缓冲存放位置,使用系统临时目录或自定义目录;
- ◆ 帮助文档:点击此处可打开 CANScope 的用户手册;
- ◇ 关于:点击可显示 CANScope 软件的版本号、设备类型、设备序列号、固件版本等 设备信息。

5.2 高级菜单

高级菜单包括协议分析、报文解析列表、自定义分析、仪表演示、J1939 演示及规则发送 6 个协议分析工具,如图 5.2 所示。

	🗃 📮	📝 🛃 E	8 🗆 🛙	<u> </u>				CANScope	在线
	开始	高级	报文	测试	共享	波形	眼圈	示波器	PORT板
派 协议分析	北 文解析	列表 自定义) 🔮)	9 9演示 井				
		分析工	<u>ج</u>		2	发送工具			

图 5.2 高级菜单

- ◆ 协议分析:打开协议分析工具,可以对 DeviceNet、iCAN、CANopen、J1939 高层 协议进行解析;
- ◇ 报文解析列表:对接收或者重播的数据进行应用层解析,可以导入 DBC 文件,主 要用于汽车电子的 CAN 数据解码;

CAN 总线分析仪

- ◆ 自定义分析:打开自定义协议解析套件,其包含两个应用程序"自定义协议编辑器" 和"自定义协议解析";
- ◆ 仪表演示: 自定义分析实例程序;
- ◆ J1939 演示: 仪表演示实例,可对标准 J1939 协议进行仪表演示;
- ◆ 规则发送: 配置 CANScope 自动发送内容的规则,包括帧 ID 规则、数据规则、帧间隔规则等,主要用于将 CANScope 模拟一个节点或者一个网络。

5.3 报文菜单

报文菜单包括控制、采集设置、发送帧、显示、工具5大模块,如图5.3所示。

	iii 🔁 📮	1	H 🗆 🗈					CANSco	ope-在线	
	开始	高級	报文	测试	共享	波形	眼圈	示波	器 PORT	板
		波特率	1 Mbps	Ŧ	目前	定义波特率				
		采样比	100:1	*	🗌 总组	浅应答				
并后	1910	采样率	100 M				友法权	ATEXIK T	1 4 *	
控	制			采集设置						

图 5.3 报文菜单

1. 控制/采集设置

CAN 报文"控制/采集设置"菜单界面,如图 5.4 所示。

	💕 📮	🖬 🗃	H 🗆 í	<u> </u>			
	开始	高级	报文	测试	共享	波形	
		波特率	1 Mbps	*	自定	义波特率	
To		采样比	100:1	Ŧ	🗌 总线	应答	
井居 停止		采样率	采样率 100 M			侦测波特率	
控制				采集设置			

图 5.4 控制/采集设置界面

表 5.1 控制/采集设置菜单说明

功能菜单	设定	说明		
控制设置	开启	启动 CAN 报文与波形存储功能(联动启动网络共享功能、自动波特率、示波器自动量程)。		
	停止	停止 CAN 报文与波形存储功能。		
	波特率	设置标准波特率,范围 5Kbps~1Mbps。		
可在识望	采样比	示波器采样率/波特率,范围 5000: 1~50: 1,采样比越高,波形越细腻,根据软件已给的进行选择即可。		
木果以直	采样率	设置示波器采样率,范围100M~1M。		
	自定义波特率	可计算出非标准波特率,或者用于调整波特率采样点位 置和 SJW 同步跳转宽度。		

CAN 总线分析仪

续上表

功能菜单	设定	说明
采集设置	总线应答	勾选后,CANScope将作为标准CAN节点进行工作,可对接收到的正确数据进行ACK,或者对错误报文发出错误帧;如果不勾选,则CANScope作为只听模式,不影响总线。
	侦测波特率	点击使能后,将在开启后自动侦测波特率,并且 自动配置波特率。在第一次打开软件时,默认使 能侦测波特率。

2. 发送帧

设置发送帧的内容,设置说明如下:

			pa 🗋	-	í E		⊙					CANSco	pe-在线	ŧ	
		1	开始	高级	ŧ	报文	测试		共享	波形	眼圈	示波器	F F	PORT板	
			0	波特率	1 M	lbps		-		已义波特率	_				
			1816	采样出	100	:1		-	总约	脑答	***	==	- -		
		ガ店	1711	采样率	100	М					/202510 ▼	ATEXIK A	T¥ ,		
		控	制				采集设置	i			75				
类型	标准	戡据帧	Ŧ	数据	00 0	00 00	00 00 0	0 00	00 (发送间	篇 1 ms	;		_	
帧ID	000	D		王复》	欠数	1				递增选	释 帧ID	和数据遗	-	\geq	
DLC	8			发送〉	次数	无限			Ŧ					发送	
								会社	én là						

图 5.5 报文菜单-发送帧

表 5.2 发送帧设置菜单说明

功能菜单	说明
类型	设置帧类型,可选择标准数据帧、标准远程帧、扩展数据帧和扩展远程帧
帧 ID	以十六进制方式设置帧 ID。标准帧:11 位(0~7FFH),扩展帧:29 位(0~1FFFFFFH)
DLC	设置帧数据长度: 0~8 可设定
数据	0~FF FF FF FF FF FF FF FF FF,数据1~数据8,字节间以空格分隔
重复次数	一帧报文发送的重复次数, CANScope-Pro版本设置范围: 1-16777215; 其它基础型号设置范围: 1-255次
发送次数	总发送批次数,可选择软件已给的无限、1、10、100、1000,也可手动输入需要 发送的次数
发送间隔	设置两个帧之间的发送间隔时间,最小1ms
递增选择	每次发送递增方式,可选择不递增、帧 ID 递增、数据递增、帧 ID 和数据递增
发送	启动开始发送(图标会切换成"停止"再次点击后停止发送)
重播	将保存的数据,按记录的时间间隔,发送出去,也称为录播

CAN 总线分析仪

备注:

帧 ID:标准帧的帧 ID 为 11 位,扩展帧的帧 ID 为 29 位。

数据:帧数据最多为8个字节;有效数据的字节数由数据长度决定,数据长度有可能大于8字节,长度大于8字节时有效的帧数据依然为8个字节。

3. 显示方式

通过设置显示方式,可改变 CAN 报文列表中的数据显示。

表 5.3 报文菜单-显示

功能菜单	说明
时间显示	相对时间:按帧启动时刻为0开始标记时间 系统时间:按电脑系统时间来标记时间
帧 ID 显示	增重时间: 按顺尾与上一顺尾的间隔时间米标记时间 二进制、八进制、十进制和十六进制
数据显示	二进制、八进制、十进制、十六进制和字符

在报文列表窗口,右击鼠标,可以看到帧 ID 显示的扩展显示功能,如图 5.6 所示,对 应说明如表 5.4 所列。

图 5.6 帧 ID 显示扩展功能

User Manual

表 5.4 帧 ID 显示扩展功能

功能菜单	说明									
高位在前	帧 ID 高位->低位从左往右排列									
低位在前	帧 ID 低位->高位从左往右排列									
右对齐	帧 ID 显示靠右对齐,左高位补零,用于正常显示									
左对齐	帧 ID 显示靠左对齐,右低位补零,用于 SJA1000 等控制器显示									

4. 工具

"工具"模块包括查找、帧统计、流量分析、总线利用率、导出等 11 个工具,如图 5.7 所示。

	💕 📮	1	8 🗆	3 -				CANS	cope-在	线
	开始	高级	报文	测试	共享	波形	眼圈	示波器	∦ P	ORT板
		波特率	20 Kbps	*	目前	定义波特率				
π±	/mark	采样比	100:1	*	🗖 🖄	松山谷	发送帧 ▼	显示		
并后	1910	采样率	2 M					<u>31</u> 27⊼ ▼	1 4	
控	制			采集设置					╏┍┛┛	
	重找		Q 帧Ⅱ ① 流 计 <u>∠</u> 总约	(较) 10分析 11 11利用率 1 1	 触发发 协议解 脚本编 工具 	送 🚫 传 新 FFT 共 程 EDGE 边	<mark>輸延时</mark> 模干扰 , 沿统计 [● 报文/ Ⅲ 信号/ 通 号出	司期	

图 5.7 报文菜单-工具

表 5.5 报文菜单-工具功能说明

功能菜单	说明
查找	在报文列表区根据查找查找框中设置的条件查找需要的对象
帧统计	统计报文列表中的接收及发送数量、正确帧及错误帧所占比例等
帧比较	将目前软件中的报文数据与存储的报文数据进行比较,列出不在存储报文数据中的帧
流量分析	将接收到的帧按时间轴一字排开,观察传输逻辑,与流量突发之处
总线利用率	观测实时的总线负载状况
触发发送	通过设定触发条件,可以实现 CANScope 收到某些特定报文时,自动发送预设的报文
协议解析	可导入 DBC 文件,从而在菜单高级中使用报文解析列表来观测应用数据
脚本编程	用户可以自行使用 C 语言脚本编程,设定 CANScope 自动发送接收规则
传输延时	对接收到的报文延时情况进行统计,筛选后,报文按延时最大到最小排列
共模干扰	对接收到的报文的共模干扰进行 FFT 分析,并且进行统计,筛选后,报文按被干扰信号的幅值,最大到最小排列
边沿统计	对保存下来的波形的边沿测量进行统计,对波形边沿斜率和带宽进行分帧排序。
ZLG	©2022 Guangzhou ZHIYUAN Electronics Co., Ltd.

User Manual

续上表

功能菜单	说明
报文周期	对保存下来的报文进行周期统计,筛选出周期异常的报文
信号质量	对报文帧对应的差分波形的幅值、扰动、斜率的质量进行评估,结果以百分制分数在软件显示
导出	可将报文数据导出为 CSV、TXT 格式

5.4 测试菜单

CAN 总线分析仪

测试菜单如图 5.8 所示。

→ ² . 4 →	■ ゴ 田 🗔 🗓 高級 - 报文	2 ▼ 测试	共享	波形	眼圈	示波器	PORT板
事件标记 错误与干扰	文件眼图 对称性	↓ ↓2 - 则试 采样点)	】 测试 位宽	Ì━━┦ 容忍度測试	A CAN测	武仪	

图 5.8 测试菜单

表 5.6 测试菜单功能说明

功能菜单	说明
事件标记	可以在接收数据时,对特定数据进行标记,这些被标记过的帧波形固定保存,不 会随着帧刷新而被覆盖。比如对错误帧进行标记,可以长时间记录时查看到错误 帧的波形。
错误与干扰	可主动发送错误波特率、错误帧、对总线进行干扰,也可以对接收的特定报文进 行某些位的特定干扰
软件眼图	对保存下来的波形做眼图分析,通过查看异常位置,设置特定模板进行碰撞,从 而反溯找出对应的报文,从而可以查找出错误产生的原因
对称性测试	对被测总线或者节点的实时波形进行 CANH 和 CANL 对称性测试,标定是否偏离规范要求的范围
采样点测试	对被测节点进行采样点测试,标定被测节点采样点范围是否符合规范
位宽度容忍度测试	对被测节点进行波特率位宽度范围测试,标定出被测节点的波特率范围与位宽度 范围是否符合规范
CAN 测试仪	CANScope 自动化测试专用软件,可以自动进行相关的测试项测试

5.5 共享菜单

共享菜单包括服务器设置、连接到服务器 2 大模块,如图 5.9 所示。

C V	开始高级	报文测试	共享 送	新聞	示波器	PORT板		
服务端口	2000		服务器IP	127.0.0.1				
最大连接	10		连接端口	2000				
连接密码	无密码	开启服务 停止服务	连接密码	玛 无密码		一 开启连接 断开连接		
	服务器	2		连接	到服务器			

 $@2022 \ {\rm Guangzhou} \ {\rm ZHIYUAN} \ {\rm Electronics} \ {\rm Co., Ltd.} \\$

图 5.9 共享菜单

1. 服务器设置

"服务器设置"菜单,如图 5.10 所示。接入 CANScope 现场测试的 PC 需要开启。

) 💕 📮 🖌	1 🗗 🖽 (= ío	▼ CANScope(在线)						х	
	开始	高级	报文	测试	共	享 波升	じ 眼图	示波器	PORT板	界面	• 🕜
服务端	2000			6		服务器IP	192.168.4.18	1			
最大连	接 10				后.L.肥.材	连接端口	2000				
连接密	码 无密码		并后版	\$\$P\$11字112788	255	连接密码	无密码	开启	油生按 欧井注按		
		服务器设置	置								

图 5.10 共享_服务器设置

- ◆ 服务端口:设置服务器端口,即本机 Socket 服务器端口;
- ◆ 最大连接:设置服务器端的最大连接数,即最多有几个链接共享;
- ◆ 连接密码: 设置服务器端的连接密码;
- ◆ 开启服务、停止服务:启动或停止服务。

2. 连接到服务器

"连接到服务器"菜单,如图 5.11 所示。其它要获取数据的 PC 需要连接服务器。

	j 🗋 📓	6 🕀 🖲) ío	Ŧ	C	ANScope(在线)			-		х
	开始 i	高级 打	报文	测试	井	享 波飛	眼图	示波器	PORIA	界	面、	0
服务端口	2000			a		服务器IP	192.168.4.18	F				
最大连接	10				÷	连接端口	2000					
连接密码	无密码		并启版:	今 19111版3	8	连接密码	无密码	H/E	过于方 欧井注按			
服务器设置							连接到	服务器				

图 5.11 网络共享-连接到服务器

- ◆ 服务器 IP:设置所要连接到的服务器的 IP 地址,默认为本机 IP 地址;
- ◇ 连接端口:设置所要连接到的服务器的端口;
- ◆ 连接密码:设置连接密码,需要与服务器端设置的连接密码相匹配;
- ◆ 开启连接,断开连接:开启或断开与服务器端的连接。

5.6 波形菜单

波形菜单包括模式、缩放、位置、视图及波形设置五大模块,如图 5.12 所示。

	😂 🖳	1	H 🗆	(<u>o</u> -			_		CANScope-在线	
	开始	高級	报文	测试	共享	波形	眼圈	示波器	PORT板	
「「「ない」を注	修 动	○ 放大镜	會、	⊕_ 鼓大	(1) 全屏	■ 开始 上-) -a t-a	结束	□ □ 由正照量 ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓↓ ↓↓↓↓↓↓↓↓ ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓	
	模式			缩放			位置		视图 波形设置	

图 5.12 波形菜单

1. 模式/缩放/位置

模式/缩放/位置模块主要是对CAN波形区域的波形进行观察时的操作,如图5.13所示。

CAN 总线分析仪

图 5.13 波形菜单-波形操作

2. 视图

视图是 CAN 波形区域中主要的分析工具,包括水平和垂直的栅格、电压测量、内部工 具条、FFT 分析仪、边沿测量、传输延迟测量等七钟操作功能,其每个功能对应说明如表 5.7 所列。

图 5.14 波形菜单-视图

表 5.7 波形菜单-视图功能说明

功能菜单	说明
水平	显示出水平的栅格
垂直	显示出垂直的栅格
电压测量	勾选可光标测量波形电压值
内部工具条	勾选后,在 CAN 波形区域显示模式/缩放/位置模块的快捷操作
FFT 分析	对 CAN 波形区域的波形进行 FFT 快速傅里叶变换,并且进行各种频率的幅值分析
边沿测量	对 CAN 波形区域的波形进行边沿参数的测量,包括上升时间、下降时间、斜率、带宽
传输延迟测量	对 CAN 波形区域的波形进行传输延迟测量,测试出本报文被应答的最少时间和最 大时间

3. 导出

将本波形的每个采集点的电压数据,通过 CSV 或者其它格式导出,用于用户分析。

4. 属性

波形解码的阈值设置与显示查看,通常用户只需要操作显示查看即可。

5.7 眼图菜单

眼图菜单包括控制、数据源配置、眼图模板、测量及缩放五大模块,如图 5.15 所示。

CAN 总线分析仪

	💕 🞑 开始	🛃 🚽 高级	田 (三) (図) マ 根文 測试	CANScop 共享 波形 眼图 示波器 PORT	pe-在线	
) 开启	停止	清空	 通道 CAN-DIF 、 范围 0.5V/div 、 偏移 -988.108mV 	1 1 25.7 横板 載入模板 编辑模板 1 1 25.7 横板 載入模板 编辑模板 1 1 1	 □ 时间测量 □ 电压测量 □ 象标测量 □ 案样点 眼图轮廓 自动测量 	全塀 ・<
	控制		数据源配置	眼圈模板	测量	缩放

图 5.15CAN 眼图_菜单区

1. 控制/数据源配置

"控制/数据源配置"菜单界面,如图 5.16 所示。

图 5.16CAN 眼图_控制菜单

- ♦ 启动: 启动 "CAN 眼图"功能;
- ◆ 停止:停止 "CAN 眼图"功能;
- ◆ 清空:清空 "CAN 眼图"视图,即清空当前所有的眼图数据;
- ◆ 通道: 配置眼图的数据源,包括 CAN_H、CAN_L、CAN_DIFF 和 CAN-SW(在生成软件眼图时的对应通道)四种;
- ◆ 范围:数据源在垂直方向的电压档位;
- ◆ 偏移:数据源的偏置电压幅值。

2. 眼图模板

"眼图模板"菜单界面如图 5.17 所示。

图 5.17CAN 眼图_眼图模板

- ◆ 载入模板:载入系统自带的标准眼图模板;
- ◆ 编辑模板:允许用户编辑自定义眼图模板;
- ◆ 命中统计:统计触碰到眼图模板的命中次数及命中率,并以列表的形式显示;
- ◆ 显示模板:通过勾选或不勾选,可在 CAN 眼图区显示或隐藏模板;
- ◆ 命中模板:通过红圆圈,将所有触碰到模板的点,全部圈出来;
- ◆ 顶点数值:显示模板所有顶点的坐标值,包括时间位置和电压位置。
- 3. 测量/缩放

"测量/缩放"菜单界面如图 5.18 所示。

CAN 总线分析仪

图 5.18CAN 眼图_测量/缩放菜单

- ◆ 时间测量: 在视图区显示垂直测量线, 卡位时间、眼宽等;
- ◆ 电压测量: 在视图区显示水平测量线, 卡眼高、过冲等;
- ◆ 采样点:通过底色分区,用户可以从眼图状况获知最佳采样点的时间位置;
- ◆ 眼图轮廓:显示眼图的主要分布,去除了一些杂波影响;
- ◆ 自动测量:通过垂直测量线和水平测量线,自动给出眼宽和眼高的测量值;
- ◆ 全屏/缩小/放大:视图区域大小显示操作按键。

5.8 示波器菜单

示波器菜单包括控制、CAN-H、CAN-L、CAN-DIFF、水平系统、触发、显示、FFT、 校准测试七大模块,如图 5.19 所示。

	<u>iii</u>	1	a 🗄	i 📼	<u> </u>						CA	NSco	pe-离线	l.							
\sim	开始		級	报文	测试	t 共享		波形	眼圈	示波	器	PC	RT板								
▶ 开启		范围	1V/div	Ŧ	范围	1V/div	Ŧ	范围	1V/div		*	时基	20us	Ŧ	信源	CAN-DIFF	Ŧ	更多			
🔘 停止		偏移	0 V		偏移	0 V		偏移	0 V			偏移	0 S		类型	上升沿	Ŧ				Landelandus
🔤 自动	程。	耦合	AC	Ŧ	耦合	AC	*	控制	CAN-H - (CAN-L	Ŧ				方式	自动	Ŧ		<u>⊴</u> ≣∕⊼ ▼	- FF1	秋/ <u>田</u> 湖城
控制	el 👘		CAN-	H		CAN-L			CAN-D	IFF			水平系	充		触发					

图 5.19 示波器菜单

1. 控制

"控制"菜单,如图 5.20 所示。

图 5.20 示波器_控制

- ◆ 开启:启动 CAN 示波器功能 (默认自动开启);
- ◆ 停止:停止 CAN 示波器功能;
- ◆ 自动量程:自动调整当前视图区的波形测量参数,使得比较容易观看和测量。
- 2. CAN-H/CAN-L/CAN-DIFF/水平系统

"CAN-H/CAN-L/CAN-DIFF/水平系统"菜单,如图 5.21 所示。

CAN 总线分析仪

范围	1V/div	•	范围	1V/div	•	范围	1V/div	*	时基	20us	*
偏移	0 V		偏移	0 V		偏移	0 V		偏移	0 S	
耦合	AC	•	耦合	AC	•	控制	CAN-H - CAN-L	-			
	CAN-H			CAN-L			CAN-DIFF			水平系统	

图 5.21 示波器_波形显示调节区域

- ◆ 范围: 垂直档位设置,即视图区域中垂直方向每格的电压值,档位可选择 0.125/0.25/.0.5/1/2.5/6.25 v/div 六档;
- ◆ 偏移:波形的偏置电压值,即波形的水平起点线离屏幕水平中心基准线的电压差值;
- ◆ 耦合:用户可根据耦合方式滤除不需要的信号,耦合方式分为 DC (直流)、AC (交流)两种: DC 耦合即被测信号的直流分量和交流分量均可通过; AC 耦合即被测信号的直流分量被阻隔; 为了保证现场测试的实际波形,建议使用 DC 耦合方式;
- ◇ 时基:水平档位设置,即视图区域中水平方向每格的时间值,可设置范围为 1us ~ 1s;
- ◆ 偏移:在水平方向的偏置值,即波形垂直起始位置离屏幕垂直中心基准线时基差值。
- 3. 触发

"触发"菜单,如图 5.22 所示。

图 5.22 示波器_触发菜单

- ◆ 信源: 触发源,包括 CAN-H、CAN-L、CAN-Diff、CAN RXD、CAN TXD、帧起 始和外部;
- ◆ 类型: 触发类型, 包括上升沿、下降沿、双边沿、正脉冲和负脉冲;
- ◆ 方式:"普通"选项是指在满足触发条件时显示波形,不满足触发条件时保持原有 波形显示,并等待下一次触发;"自动"选项是指不论是否满足触发条件都有波形 显示,无信号输入时显示一条水平线;
- ◆ 灵敏程度: 触发比较的高电平与低电平的差值,包括"默认、加强"两个选项;
- ◆ 自动时间:在自动触发模式下,指无触发时的等待时间;
- ◆ 触发电平:设置触发电平;
- ◆ 比较符号:当触发类型选择为正脉冲和负脉冲时,该设置有效。触发比较符号包括
 ">、<和="3种,分别是指,当脉宽大于时间参数时触发、当脉宽小于时间参数
 时触发、当脉宽等于时间参数时触发;
- ◆ 时间参数:用于设置触发时的时间参数,及设置脉宽上下限值。

CAN 总线分析仪

4. 显示

"显示"菜单,如图 5.23 所示。

	2	d = = 1	<u> </u>	,				C/	NSco	pe-在线					
	1	級报文	测试	t 共享		波形	眼圈	示波器	PC	ORT板				1	
▶ 开启	范围	1V/div *	范围	1V/div	-	范围	1V/div	*	时基	20us	*				
🕒 停止	偏移	0 V	偏移	0 V		偏移	0 V		偏移	0 S					14-44-ball-us
📕 自动量程 ▼	耦合	AC 🔹	耦合	AC	•	控制	CAN-H - CA	AN-L 👻				肥友	- - - - 	- FFI	₩/ <u></u> 推測域
控制		CAN-H		CAN-L			CAN-DIF	F		水平系统	1				
										/					
			V	CAN-H		B	搄测量	测量	CAI	N-DIF 🔻					
			V	CAN-L	E	Ħ	起测量	窗口	分别	り窗口 ▼					
			V (AN-DIFF											
							显示								

图 5.23CAN 示波器_显示菜单

- ◆ CAN-H: 勾选可在 CAN 示波器区显示 CAN-H 波形;
- ◆ CAN-L: 勾选可在 CAN 示波器区显示 CAN-L 波形;
- ♦ CAN-DIFF: 勾选可在 CAN 示波器区显示 CAN-DIFF 波形;
- ◆ 时间测量: 勾选可进行水平时间测量;
- ◆ 电压测量: 勾选可进行垂直电压测量;
- ♦ 测量:切换测量窗口,可在 CAN-H、CAN-L、CAN-DIFF 窗口内切换;
- ◆ 窗口:窗口类型有两种,包括"分别窗口"和"共用窗口",即将 CAN 示波器视 图区的波形显示在三个窗口中,或显示在同一个窗口中。

5. FFT

"FFT"菜单,如图 5.24 所示。

图 5.24 示波器_FFT

- ◆ FFT:包括无、CAN-H、CAN-L、CAN-DIFF4个选项,分别指不开启 FFT 功能、 对 CAN-H 、CAN-L 或 CAN-DIFF 信号源做 FFT 快速傅里叶变换频谱分析;
- ◆ Scale: 设置 FFT 频谱图的显示模式,分别可设置 dB: 以分贝毫瓦方式显示 FFT 结果; Rms: 显示电压有效值,即均方根值; Amplitude: 显示 FFT 的真实幅值;
- ◆ 数据:包括全部数据和当前窗口2种,即对全部数据或当前窗口的数据做FFT分析。

6. 校准测试(用户禁止擅自操作,或者在厂家指导下进行操作,否则后果自负) **乙氏** ©2022 Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

"校准测试"菜单,如图 5.25 所示。

(🔊 🖻 🖥	1	a 8	1 🗆 🛍	D -					(CANS	cop	pe-在线					
	クロ 开始	i i	級	报文	测试	t 共享		波形	眼圈	示波器	8	PC	DRT板					
	▶ 开启	范围	1V/div	+	范围	1V/div	*	范围	1V/div		* 时	≖	20us	*				
)停止	偏移	0 V		偏移	0 V		偏移	0 V		僱	移	0 S		2442		CET	14-14-10-1-F
	■自动量程 ▼	耦合	AC	-	耦合	AC	*	控制	CAN-H - C	AN-L	•				肥友	<u>亚</u> 示 *	*	₩/ⅢⅢ ▼
	控制		CAN-H	H		CAN-L			CAN-DI	F			水平系统	ŧ				
									内部校	注注								
									外部校	淮								
									工厂测	试								
									校准测	试								

图 5.25 示波器_校准测试

5.9 PORT 板菜单

"PORT 板"菜单,如图 5.26 所示。

	💕 🔛	7 🗗	# 🗆 🛙					CAN	NScope-运行中	
\sim	开始	高级	报文	测试	共享	波形	眼圈	示波器	PORT板	界面(UI) * 🥑
V	启用示波	8	单线CAN	正常模式		- 1	的面板			
V	启用终端印	包阻								
数学差分			*							
			基本控制				stress			

图 5.26PORT 板菜单

1. 基本控制

"基本控制"菜单,如图 5.27 所示。

	启用示波器		单线CAN	正常模式	Ŧ
	启用终端电阻				
数学差分		Ŧ			
		1	基本控制		

图 5.27PORT 板_基本控制

- ◆ 启用示波器:勾选可使能示波器功能,否则将会硬件关闭示波器通道;
- ◆ 启用终端电阻:勾选可启用 PORT 头自带的 120 欧姆终端电阻,即将该终端电阻并 联到 CANH 和 CANL 之间,如果用户接入的是 CANScope-StressZ 扩展板,则此功 能无效;
- ◆ 数学差分/硬件差分:数学差分是指将 CAN_H 对 GND 的电压,和 CAN_L 对 GND 的电压相减,得到差分波形 CAN_DIFF,供触发判断和眼图叠加使用;硬件差分是 通过内部硬件实现的,它是将 CAN_L 作为参考基准,差分波形 CAN_DIFF 是 CAN_H 与 CAN_L 的电压差。在硬件差分时,会有一个"隔离外部地"的勾选项, 如图 5.28 所示,如果勾选后,则切断示波器信号地与外部地的通道,实现抗干扰 效果。

	启用示波器	☑ 隔离外部地	
V	启用终端电阻	单线CAN 正常模式	•
硬件差线	÷	•	
		基本控制	

图 5.28 隔离外部地

◆ 单线 CAN:如果用户接入的 PORT 头是 P7356 单线 CAN 适配器,则此功能有效, 用于设置单线 CAN 的工作模式,有正常模式、高速模式、高压唤醒模式、睡眠模 式,如图 5.29 所示。

单线CAN	正常模式	*
正常模式 高速模式		
高压唤醒 睡眠模式	美式	

图 5.29 单线 CAN 模式

2. 控制面板 Stress

"控制面板 Stress" 菜单,如图 5.30 所示。

	💕 📮	7	# 🗆 🛙	⊙				CAN	NScope-在线	e la
	开始	高级	报文	测试	共享	波	形眼图	示波器	PORT板	
	启用示波	器	单线CAN	正常模式		-	控制面板			
	启用终端	电阻								
数学差分			r							
			基本控制				stress			

图 5.30 控制面板 Stress

打开控制面板菜单后,出现 CANStress 界面,如图 5.31 所示。此界面在用户选配 CANScope-StressZ 时,操作设置有用。具体功能将在 8.2.1 章节中详细叙述。

CANStress	- • •									
文件 视图 模拟干扰 关于										
模拟干扰 配置 阻抗测量										
CAN IN	CAN OUT									
	RSH (in Ohm): 0.0									
RHL (in Ohm): 120.0 🔅 R _{HL}	CHL (in pF):									
	RSL (in Ohm): 0.0									
最大允许电压: 5 V 布局: Standard Layout	▼ 重置配置									
□ 线缆长度模拟 00.0	(in m)									
<u>د</u>										

图 5.31 CANScope-StressZ 界面

 $\textcircled{\sc conditions} 02022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

6. 界面说明

6.1 界面样式

单击软件主界面右上角的【界面】菜单,将弹出子菜单,如图 6.1 所示。

	💕 📮 📓 🛃 🎞 📼 🗔 📼							CANS	cope-在线	ŧ	X 0		
	开始	高級	报文	测试	共享	波形	眼圈	示波器	R.	PORT板			
2			- -------------	-		-		-		9			语言(Language) 🕨
						- · · ·	0		1	U			皮肤颜色
打开	保存	观盖保存	显示窗口 ▼	默认布局	平铺窗口	浮动窗口 窗口	口拍照缓	存位置有	脚文档	¥ 关于			字体大小 ▶
	文件				窗口				帮助				无干扰模式

图 6.1 界面设置菜单

- ◇ 语言:设置软件显示的文字为中文或英文;
- ◆ 皮肤颜色:设置软件界面颜色为 Blue、Black 或 Sliver,默认颜色为 Silver;
- ◆ 字体大小:设置软件中的字体为较小、正常或较大,默认字体为"较小";
- ◆ 无干扰模式: 切换到该模式下,可一键关闭 CANScope 相关的发送功能,避免 CANScope 干扰到总线。

6.2 窗口排列

"窗口"模块可从主界面的"开始"菜单中进入,窗口模块包含"显示窗口、默认布局、平铺窗口、浮动窗口和窗口拍照"5个按钮,如图 6.2 所示。

	\ 🖻 🖟	1 🖬 🚽	H 🗆 (C/	ANScope	-在线			- 0 X
	开始	高级	报文	测试	共享	波形	眼图	示波器	PORT板	界面(UI) 🎽 🕜
				đ			10	2	0	
打开	保存	覆盖保存	显示窗口 ▼	默认布局	平铺窗口	浮动窗口!	窗口拍照	缓存位置 帮助]	文档 关于	
	文件				窗口			帮助	b	

图 6.2 开始菜单-窗口排列

6.2.1 显示窗口

单击窗口模块中的【显示窗口】按钮,可打开子菜单,勾选其子菜单项,可显示或隐藏 对应的窗口。

"显示窗口"子菜单,如图 6.3 所示。

CAN 总线分析仪

6.2.2 默认布局

单击窗口菜单中的【默认布局】按钮,可将当前己打开的所有窗口叠加显示,如图 6.4 所示。

		1 a e			C	ANSco	pe-在线						- 0 %
Л	贻	高级	报文	测试	共享	: 35	UT I	E	示波器	POR	T板		界面(UI) * 🕜
1777 保 文	存覆	■ ■保存 =		二 默认布局		浮动窗	 () <li< th=""><th>(缓存)</th><th>2 2 立章 帮助: 帮!</th><th>) 文档 关 助</th><th>2 €Ŧ</th><th></th><th></th></li<>	(缓存)	2 2 立章 帮助: 帮!) 文档 关 助	2 €Ŧ		
		- - - - - - - - - - - - - - - - - - -	to 🖌 🖌		তি - সালে	#3	, 波形	眼睛	1 示波		PORT板		
			市時本	500 Khns		-		友 送开!		ан . Б	数据 00	00.00	
			采样比	100:1			总线应答	+ ~= 66ID	000	~	重复次数	1	
	开启	停止	采样率	50 M		し	し、彼特率	DLC	8		发送次数	- 无限	
	ŧ	空制			采集设计	i							
	- C	AN报文	×	网络共享	CA	N波形	🛄 CAN		CAN示	波器			
	Bal	▲ [±] ∕	** **		■ 白动	日日 🙃	白动漆犀			法除列	π. π. βi		
	度思	/0 /0	Pt)	** <u>=</u>	= = 443		1 44314077			/日K3/2-3-	404 1997 Ri	*	
	在此	小输入	又在	-u ⊬⁄oNaaîλ 寸	<u> </u>	在此外	tấλマ	在此外	埔λ	が天当	EL 内給λ	* 7 7	
		52 492	2 00.0	1.27 718	973	st) TH		接收	1017 (111	扩展数	据航		
	¹ U	52,493	3 00:0	1:27.721	693	成功		接收		扩展数	据帧	8	
	100	52,494	00:0	1:27.722	669	成功		接收		扩展数	据帧	8	
	TU.	52,495	5 00:0	1:27.725	557	成功		接收		扩展数	据帧	8	
	-00	52,496	5 00:0	1:27.725	995	成功		接收		扩展数	据帧	8	
	w	52,497	00:0	1:27.726	989	成功		接收		扩展数	据帧	8	
	100	52,498	3 00:0	1:27.728	363	成功		接收		扩展数	据帧	8	
	-W	52,499	00:0	1:27.728	685	成功		接收		扩展数	据帧	8	
		50.500	000	1 07 700	055	-4-1		4-17-14-		*******	+P+F	0	

图 6.4 默认窗口

6.2.3 平铺窗口

单击窗口菜单中的【平铺窗口】按钮,可将当前已打开的所有窗口平铺显示,如图 6.5

CAN 总线分析仪

User Manual

		📂 🔛	M 🗧 🗄		Ŧ	CANSc	ope-在线					_ 0	23	
		开始	高级	报文	测试	共享	皮形 眼	8	示波器	PORT板		界面(UI) ▼	0	
	2	R			f 8	3	6		?	?				
	打开	保存	豊保存	显示窗口默	认布局) 平铺的	窗口 浮动窗	四 窗口拍照	缓存位	置 帮助文档	当关于				
		文件			<u>م</u> ر ا				帮助					
🔊 🖻 🖬 🖬 🗉 🗉	8 🗆 🔯 🔻					CANSo	ope-高线							- 0 - X -
一 开始 高級	报文 测试	共享 波开	6 1835 1	示波器 PORTE										界面(UI) * 😧
	0 Kbps ▼ 0:1 ▼ M	 自定义波林 总线应答 依测波特率 	新学 共型 标准数 校ID 000 DLC 8	講報 ◆ 数据 重算び 发送び	00 00 00 00 00 00 00 00 激 五限	00 00 炭送间隔 送增选择	1 ms 岐ID和歌編述 *		时间显示 相对的 較印显示 十六进 数据显示 十六进		→ 1000000000000000000000000000000000000	◎ 執比较 型 第量分析 区 总线利用率 工具	10111 触状双道 10122 前の以解析 1011 脚本编程	: ¹ ¹ (○) (# 編録日) : *** 共興干扰 : 1 ¹¹ 注 号出
T CAN报文 × 🕑 网络	8共享					* X	CAN示波器		_			and a		+ # ×
A X X X A	📄 🔳 自动量	程 😢 自动滚期	耳 🐻 清除过滤	🖌 清除列表 🚽	1				CAN-H	CAN-L	50us/div L	AN-DIFF		
序号 时间	¥	ta:	方向	較类型	数据长度	é.^			HOFS: 200	Ous HOFS	200uS H	OFS: 200uS	R	
在此处输入 7 在此处	输入文字 7 石	E此处输入 5	7 在此处输入	7 在此处输入					VOFS: -41	3.843r VOFS:	200mV V	DFS: -1.319V		
30 52,492 00:01:2	27.718 973 成	功	接收	扩展数据帧	8	OE		T	a abaa	ada o ada	d o comi	La transition		
52,493 00:01:2 52,494 00:01:2	27.722.669 BZ	初 功	接収 接約	2 展数结核 扩展数据帧	8	OE	CAN-H -			.,				
31 52,495 00:01:2	7.725 557 成	功	接收	扩展数据帧	8	OE								
52,496 00:01:2	27.725 995 成	功	接收	扩展数据帧	8	OE								
52,497 00:01:2	27.726 989 成	功	接收	扩展数据帧	8	OE								
× 52,498 00:01:2	(1.726 303 htt. III	*0	122.62	2 MERCINER:	8	0E +								1-()-(-) T
CANEETTI M							CANIFE							
CAN2075 X	M2.M2						CAINER			_		-		• * *
		50us	100us	150us	200us			E	/e Info ount :0	Voltage one	: 3.32V	Quality Qfact :	-	
1V				1			-50%	-30% 01)0ns/div	zero ampl 30%bobt 501	: 0V : 0V	SNR :	-	150%
0mV 1V							3.32V 2.82V			, ingin				
CAN-L 500mV- 0mV			896	.5mV			2.32V							
CAN-差分 500mV- 0mV			796	.9mV			1.32V							
CAN-逻辑值			99.0	STINV			819mV 319mV							
CAN-分析							-181mV -681mV							
07/2										设备:版本(Pro)	序列号(75)	深地	\$2.50 M	谚称霸:500 Kbps

图 6.5 平铺窗口

6.2.4 浮动窗口

单击窗口菜单中的【浮动窗口】按钮,可将当前窗口浮动显示,如图 6.6 所示。

		CANScope-在线	
开始 高级 报文	测试 共享 波形 眼層	日 示波器 PORT板	界面(UI) * 🥝
		? ? <th?< th=""> <th?< th=""> <th?< th=""> <th?< th=""></th?<></th?<></th?<></th?<>	
		▼× CAN眼图	▼ ∓ ×
			Quality
■ 自动量程 22 自动滚屏 12 清	除过滤 😠 清除列表 🕠	count :0 200ns/div	3.3V Qfact :
序号时间		to Course ampl	ER
在此处输入 マ 在此处输入文:	CAN波形		
36 379 00:02:49 350 1		<u>M2.M2</u>	
36,380,00:02:49,376,8		50us 100us 150us	
36,381 00:02:49,401 8			
36,301 00:02:49.401 0	1.547V -	היה היהיה היה היה היה היה היה היה היה ה	
36,383 00:02:49,443	-7.813mV -		
36,384 00:02:49,476	179.7mV -		
36,385 00:02:49,498,9	-1.156V -	176 3mV	1109/ 1209/ 1509/
36,386 00:02:49,526 F	203.1mV - CANL世績 75.17mV		
36.387 00:02:49.548	-50.78mV -	202.5117	
36.388 00:02:49.571 5	2.688V -		
36.389 00:02:49.602 0	-140.6mV -		
36,390 00:02:49.622 5			
36,391 00:02:49.645	UAIN-12相		
36, 392 00:02:49.685	ann () 45		
36, 393 00:02:49.711 (— CAN-分析	100	
36, 394 00:02:49.737 4			
36, 395 00:02:49.765 9	CAN示波器 CAN波形		
36, 396 00:02:49.789 2	59 队归 友达	₩	
36, 397 00:02:49.816 9	107 成功 发送	标	
36, 398 00:02:49.840 4	119 成功 发送	标 🗸	
< III		•	
		设备:版本(Pro)	采样率:100 M 波特率:1 Mbps

图 6.6 浮动窗口

 $\textcircled{\sc c}2022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

6.2.5 其它

1. 界面左上角菜单

如图 6.7 所示,为主界面左上角的快捷菜单,其中红色矩形框中的两个按钮分别为【平 铺窗口】和【浮动窗口】快捷按钮,与窗口菜单中的这两个按钮对应。

图 6.7 界面左上角菜单

2. "关于"窗口

图 6.8"关于"窗口

6.3 界面布局

CANScope 软件提供自定义窗口布局功能。首先,通过单击窗口菜单的【平铺窗口】或 【浮动窗口】按钮,使窗口脱离选项卡;然后,将鼠标放在要拖动的窗口的标题栏,并按住 鼠标左键拖动鼠标,这时界面上出现拖动图标,拖动图标有三种样式:

6.3.1 界面四周的图标

界面四周的拖动图标有四种样式,如图 6.9 中红色矩形框所示。

将鼠标移动到四周的小图标上(这里移动到顶部的小图标上),然后松开鼠标,可将窗 **ZLG** ©2022 Guangzhou ZHIYUAN Electronics Co., Ltd.

口放置在相对于主界面的顶部,如图 6.9 中黄色矩形框所示区域。

图 6.9 拖动窗口到主界面的顶部

其功能描述如表 6.1 所示。

表 6.1 拖动图标

图标样式	功能描述
	将窗口放置到当前窗口的顶部
	将窗口放置到当前窗口的底部
E	将窗口放置到当前窗口的左侧
D	将窗口放置在当前窗口的右侧

6.3.2 拖动到某个窗口范围内

当将窗口拖动到某个窗口范围内时,在这个窗口中间位置会出现拖动图标,如图 6.10 所示。

图 6.10 拖动图标_拖动到本窗口范围内

拖动图标的五个按钮,分别表示将"被拖窗口"放置在本窗口的上、下、左、右位置。C2022 Guangzhou ZHIYUAN Electronics Co., Ltd.

1. 拖动窗口到某个窗口的四周

将鼠标移动到拖动图标的上、下、左、右四个按钮上,可将窗口拖动到某个窗口的四周。 例如:如图 6.11 黄色矩形框所示,是将被移窗口放置到本窗口的顶部。

图 6.11 拖动窗口到本窗口的顶部

2. 拖动窗口与某个子窗口叠加

将鼠标移动到拖动图标的中间按钮上,可将被拖窗口与某个窗口叠加,如图 6.12 所示。

图 6.12 拖动窗口与另一个窗口叠加

3. 将叠加的窗口分离

如图 6.13 所示,"黄色矩形框"所示窗口为通过拖动叠加的窗口,现在要把它从叠加 的窗口中分离出来,只需要将鼠标放在图中底部的"红色矩形框"区域,按住鼠标左键拖动鼠 标,并在合适位置松开鼠标即可。

User Manual

CAN 总线分析仪

	()()()()()()()()()()()()()()()()()()()
	The second s
	a de la companya de l
模式 螺紋 位置 視路	设置
· · · · · · · · · · · · · · · · · · ·	CAE示統器 ▼ P ×
🗈 🔥 🎋 🎋 🚔 🧾 📴 自动走展 🦉 潜脉过滤 🖌 清空列表	HDTV: 20uS/div HDTV: 20uS/div HDTV: 20uS/div
序号 时间 状态 後敏方向 軟类型 数据长度 ^	HOFS: 80u5 HOFS: 80u5 HOFS: 80u5 VOIV: 250mV/disVOIV: 250mV/disVOIV: 500mV/dis
在此沈输 7 在此沈输入文字 7 在此沈输 7 在此沈输 7 在此沈输 7 在此沈输	VOFS: -628mV VOFS: 504mV VOFS: -1.188V
15,218 00:00:55.127 911 成功 操作(本地) 新信款集報 0	
15,220 00:00:55.133 166 成功 接收(本地) 标准数据帧 8	
35,221 00:00:55.137 040 成功 腰收(本地) 枢椎数据帧 8	
15,222 00:00:55.142 826 成功 授收(本地) 彩電数据帧 8	1) 1171 11717474444444
15,224 00:00:55.148 670 成功 操作(本地) 标准数据帧 8	
15,225 00:00.55.151 198 成功 接收(本地) 板准数据帧 8	
15,226 00:00:55:154:070 成功 課役(本地) 形住政務会 0	
15,227 00:00:55:157 N37 R08 単位(本地) 初世紀世紀 0 15,228 00:00:55:160 578 成功 単位(本地) 初律数据軸 8	I KIN A KIN MA MA A A A A A A A A A A A A A A A A
15,229 00:00:55.163 806 成功 雅收(李迪) 标准数据帧 8	CANON A CONTRACTOR OF CONTRACTOR
15,230 00:00:55.167 956 成功 建收(本地) 石油数据帧 8 15,230 00:00:55.167 956 成功 建收(本地) 石油数据帧 8	
2011年1月1日 1月1日 1月1日 1月1日 1月1日 1月1日 1月1日 1月	
315,233 00:00:55.176 285 成功 接收(本地) 标准数据帧 8	
35.234 00:00:55.178 909 成功 操伙(本地) 石油数据帧 8 ¥	and Marketshire and a start b
4 →	
■ CAN 被形 ×	
MEM2	
50uz 100uz 150uz 200uz	
13287	
CANEH 640.8mV-	and the second se
AND AND A REPORT OF A REPORT O	
- CAV-L 8155mV-	
2 ¹ 878V =	──── └ └└└└ └└─└──────────────────────
-205.0 nV -	
CAN4-223812 20000000000000000000000000000000	
CAN-94ft 1	
4	🗮 CAU行波器 🗰 CAN 翻图
Ready	设备:版本(Pro),序列号(35) 采样率:100 g 波特率:1 Mops .;

图 6.13 通过拖动叠加的窗口

6.3.3 拖动到多个窗口之间

当拖动窗口到多个窗口之间时,出现如图 6.14 所示的图标,其四个方向的小图标分别 表示,将窗口放置在由这多个窗口组合成的区域的上、下、左、右四个位置上。

图 6.14 拖动图标_多个窗口之间

备注:当窗口处于选项卡状态时,不支持拖动;只有当窗口处于"浮动"状态,或者"平铺"状态时才支持拖动。

7. 视图区快捷菜单

7.1 CAN 报文视图区右键菜单

在报文视图区内,右键可打开快捷菜单,菜单说明如下:

图 7.1 CAN 报文右键菜单界面

表 7.1 CAN 报文右键菜单说明

功能	说明
复制	复制当前选择的报文数据到剪切板
查找	打开"查找"窗口
帧统计	打开"帧统计"窗口
查看注释	打开"注释"窗口并查看注释详情
添加注释	打开"注释"窗口并添加新注释
上一个注释	自动跳转到上一个注释
下一个注释	自动跳转到上一个注释
添加到重播列表	将当前选中的数据添加到重播列表
全部添加到重播列表	将当前报文区中的所有数据添加到重播列表
侦测波特率	立即启动自动侦测波特率
自动滚屏	使能自动刷新/停止刷新采集的数据
时间同步	可用于多台 CANScope 的同步采集
	清除过滤:清除数据过滤区输入的所有过滤条件;
过滤操作	过滤条件"与": 每个筛选框条件间进行"与";
	过滤条件"或": 每个筛选框条件间进行"或"
清空列表	清空数据视图区中的数据

User Manual

续上表

功能	说明
时间显示	系统时间、相对时间、增量时间
帧 ID 显示	二进制、八进制、十进制和十六进制; 高位在前、低位在前;
	左对齐 (右补零)、右对齐 (左补零)。
数据显示	二进制、八进制、十进制、十六进制和字符

备注:"系统时间"指计算机系统时间,"相对时间"指设置采集时间,"增量时间"指本帧头与前一帧头的 时间差。

过滤条件"与"和过滤条件"或"指筛选框之间的逻辑关系,比如用户需要看到 ID 为 0x001 和错误帧,则 在帧 ID 的筛选框中输入"001",然后在状态的筛选框中输入"错误",然后右击报文窗口,选择过滤操作为 过滤条件"或"即可。

7.2 CAN 波形视图区快捷菜单

如图 7.2、表 7.2 所示为波形视图内的右键快捷菜单和标签右键快捷菜单。

图 7.2 波形视图内的右键菜单

表 7.2 波形视图内的右键快捷菜单说明

功能菜单	说明		
放大	放大波形		
缩小	缩小波形		
缩小到全屏	全屏显示波形		
放置标签	在光标所在位置放置标签		
增加标签	增加新的标签		
到标签	转换到特定标签		
到触发点	转换到触发点		
到数据开始处	转换到数据开始位置		
到数据结束处	转换到数据结束位置		
尾松	波形显示设置(正常情况下不需要点击,		
/丙 工	如果需要波形叠加查看,则进行配置)		

CAN 总线分析仪

图 7.3 标签右键快捷菜单

表 7.3 标签右键快捷菜单说明

功能菜单	说明
放置标签	在光标所在位置放置标签
增加标签	增加新的标签
删除标签	删除选择的标签
删除所有标签	删除所有的标签
到标签	转换到特定标签
到触发点	转换到触发点
到数据开始处	转换到数据开始位置
到数据结束处	转换到数据结束位置
移到底部	将当前标签移动到底层,当有多个标签
	重叠在一起时,用来显示被覆盖的标签
属性	波形显示设置(正常情况下不需要点
	击,如果需要波形叠加查看,则进行配
	置)

7.3 CAN 眼图和 CAN 示波器快捷菜单

如图 7.4 所示为 CAN 示波器和 CAN 眼图视图内的右键快捷菜单快捷菜单。

图 7.4 示波器、眼图视图内的右键菜单

表 7.4 示波器、眼图右键快捷菜单说明

功能菜单	说明
保存为图片	将波形或者眼图保存为图片
保存波形数据	将波形保存为 CSV 等格式

7.4 CAN 波形视图区内部工具条

CAN 波形视图区内的内部工具条,包括模式、缩放、位置、视图、位置这五大模块。

T CAN报文	🜔 网络共享	🔤 CAN波形 🗙	📆 CAN眼图 📃 CA	N示波器
D 🖓 🔎	11: 11: IM	E T 9 91	0s	

图 7.5 波形内部工具条

内部工具条功能说明如表 7.5 所示。

表 7.5 内部工具条说明

按钮图标	按钮名称	对应菜单按钮	功能描述
R	标准模式	标准	该模式下鼠标为指针形状
873	阅读模式	移动	该模式下鼠标为手形状,按住鼠标左键在视图 区移动鼠标,可拖动波形视图
\mathcal{Q}	放大镜模式	放大镜	该模式下滑动鼠标可放大和缩小波形视图
ъЪ	缩小	缩小	单击该按钮可按固定比例缩小波形
£	放大	放大	单击该按钮可按固定比例放大波形
	全屏	全屏	单击该按钮可将波形视图缩小到全屏显示
K	到数据开始位 置	开始	跳转到视图的开始位置
V	上一页	上一页	转到与当前视图相邻的上一页视图
Т	到触发位置	-	转到数据的触发位置
>	下一页	下一页	转到与当前视图相邻的下一页视图
N	到数据结束位 置	结束	跳转到视图的结束位置
时间偏移	-	-	设置时间偏移量

7.5 CAN 报文视图区内部工具条

CAN 报文视图区内的内部工具条,如图 7.6 所示。

CAN 总线分析仪

图 7.6 波形内部工具条

内部工具条功能说明如表 7.6 所示。

表 7.6 内部工具条说明

按钮图标	按钮名称	对应菜单按钮	功能描述				
	复制	复制	复制当前选择的行数据到剪切板				
1	查看注释	查看注释	打开"注释"窗口并查看注释详情				
*	添加注释	添加注释	打开"注释"窗口并添加新注释				
*	上一个注释	上一个注释	自动跳转到上一个注释				
*	下一个注释	下一个注释	自动跳转到上一个注释				
×	查找 查找		打开"查找"窗口				
	帧统计	帧统计	打开"帧统计"窗口				
📑 自动量程	自动量程	自动量程	自动将示波器参数调整到方便观察和测量位置				
😂 自动滚屏	自动滚屏	自动滚屏	使能自动刷新/停止刷新采集的数据				
🛜 清除过滤	清除过滤	清除过滤	清除数据过滤区输入的所有过滤条件				
🔀 清除列表	清除列表	清除列表	清空数据视图区中的数据				
4	录音标记	-	点击后,按空格开始录音				

8. 功能介绍

本章将详细介绍软件的各个功能模块及基本操作等。软件主界面如图 8.1 所示。

图 8.1 CANScope 主界面

8.1 基本物理层和链路层分析测试

8.1.1 自动侦测波特率与自定义波特率

波特率(也称位定时,就是信号位的最小脉宽)是 CAN 总线通讯的最基本要素,如图 8.2 所示,为 125K 波特率下,在 CANScope 的 CAN 示波器中,菜单点击"时间测量",即可在示波器中拖出光标,测量最小的脉宽时间,1 除以这个时间,就是波特率。

图 8.2 CAN 示波器上测量最小脉宽获得波特率

如果波特率不匹配或者波特率有所偏差,会导致识别信号的错误,造成无法通讯或者通讯异常。所以任何情况下,对 CAN 总线测试,首先都要测试波特率的准确性。

CAN 总线分析仪

为了方便用户获得实际波特率, CANScope 包含自动匹配的功能,可以直观地反映总线上的真实波特率状况。

将 CANScope 的 CANH、CANL 接入总线,打开软件,在 CAN 报文界面,选中"侦测 波特率"开关,开关变土黄色,这时点击"开启",设备就开始自动匹配波特率,等待一段 时间,CANScope 将自动统计出来的波特率结果填入波特率框,如图 8.3 所示,反映出实际 的波特率为 125.4Kbps,说明和标准的 125K 有所偏差。

图 8.3 自动匹配波特率

2. 自定义波特率

某些情况下,采样点位置和 SJW 同步跳转宽度比较特殊,这时,如果直接采用默认的 波特率,会导致 CANScope 接收的报文错误帧增多,所以需要进行波特率的自定义计算。勾 选"自定义波特率"后,可根据计算工具得出的 BTR0、BTR1 值,设置图 8.4 中 BTR0、BTR1 值,在设置 BTR0、BTR1 值时,要去掉侦测波特率的使能,否则设置无效。

图 8.4 自定义波特率

如图 8.5 所示是计算界面,填入要计算的目标波特率值,再点击 "Calcultae",即可在左 边框中获得一系列的波特率寄存器值。

X Btr01 for Philips CAN families												
💶 Sam	Samples =1 Samples =3											
BTR 0	BTR 1	BTL cycles	SJW	Sampling po	Actual		16000 KHz					
0x43	0x2B	16	2	81.3%	125.0Kbps							
0x43	0x3A	16	2	75.0%	125.0Kbps		Baudrate					
0x43	0x49	16	2	68.8%	125.0Kbps		125.0 Kbps					
0x43	0x58	16	2	62.5%	125.0Kbps							
0x43	0x67	16	2	56.3%	125.0Kbps		Match +1%					
0x83	0x2B	16	3	81.3%	125.0Kbps							
0x83	0x3A	16	3	75.0%	125.0Kbps	=	Calcultae					
0x83	0x49	16	3	68.8%	125.0Kbps							
0x83	0x58	16	3	62.5%	125.0Kbps							
0x83	0.457	10	3	56.3%	125 0Khps		VeB					
< 0xC3	0x3A	16	4	75.0%	125.0Kbps							
0xC3	0.15	15	4	60.0%	120.UKDDS		w 🐨					
0xC3	0x58	16	4	62.5%	125.0Kbps		71-041-0004					
0xC3	0x67	16	4	56.3%	125.0Kbps		ZIGCAN 2004					

图 8.5 自定义波特率计算器

比如,选择了 SJW 为 4,采样点为 75%的波特率值——0xC3,0x3A。就可以将这个值填入 CANScope 的 BTR0 和 BTR1 的框中,点击开启,即可以按照这个自定义波特率来运行。 如图 8.6 所示。

CAN 总线分析仪

图 8.6 自定义波特率配置

8.1.2 实时示波器测量分析

CANScope 的实时示波器是一款通用的双通道 100MHz 虚拟示波器,不但可以看 CAN 信号波形,其它信号的波形也可以观察。

用鼠标单击主界面上的"CAN 示波器"选项卡,可打开界面,如图 8.7 所示。CAN-H 为示波器测量 CANH 的波形, CAN-L 为示波器测量 CANL 的波形, CAN-DIFF 为差分后的 波形 (V_{CAN-H}-V_{CAN-L})。

图 8.7CAN 示波器界面

1. 波形信息介绍

如图 8.8 所示,为波形视图区当前显示的波形的基本信息。

图 8.8 波形视图区基本信息

- ◆ 波形名称:显示对应波形通道的名称;
- ◆ 水平档位:显示水平系统的时基,表示水平每栅格所对应的时间长度,其对应菜单

区中"水平系统"子菜单的【时基】; 键盘 Ctrl+鼠标左键可放大波形, 键盘 Ctrl+鼠标右键可缩小波形。

- ◆ 垂直档位:显示波形的电压范围,表示垂直每栅格所对应的电压幅值,对应菜单区中"CAN-H、CAN-L和 CAN-DIFF"子菜单的【范围】;
- ◆ 水平偏移:显示水平系统的偏移时间,对应菜单区中"水平系统"子菜单的【偏移】;
- ◆ 垂直偏移:显示波形的垂直偏移,对应菜单区中"CAN-H、CAN-L 和 CAN-DIFF" 子菜单的【偏移】;
- 2. 调整耦合方式

在示波器的菜单中, CAN-H和 CAN-L中, 都有耦合方式的调整, 如图 8.9 所示。

图 8.9 调整耦合方式

- ♦ AC: 被测信号的直流分量被阻隔,可使用更高的灵敏度显示信号的 AC 分量;
- ◇ DC: 被测信号的直流分量和交流分量可通过,在分析实际 CAN 波形电压时,建议 使用 DC 耦合方式。
- 3. 调整触发位置

为了更方便观测波形,需要先确定触发的位置。点击菜单"触发"中的信源,选择某个 触发量,如图 8.10 所示。

	信源 CAN-H 🔽	更多	信源 CAN-H 🔹	更多	信源	CAN-H	•	更多
	CAN-H		类型 上升沿 ▼		类型	上升沿	Ŧ	
信源 CAN-H ▼ 更多	CAN-L		Linke		h i	#####	÷	
类型 上升沿 ▼	CAN-DIFF		下降沿		7336	8/2		
÷**			双边沿		自动			
	岐启始		正脉宽		普通			
触发	外部		负脉宽					

- ◆ 信源:选择某个通道作为触发源,如果选择"帧起始",就是自动识别帧起始位置开始触发,默认是 CAN-DIFF。
- ◆ 类型:选择触发的条件,默认是上升沿,如果信源是 CAN-L,类型要选择为下降 沿。
- ◆ 方式:"普通"选项是指在满足触发条件时显示波形,不满足触发条件时保持原有波 形显示,并等待下一次触发;"自动"选项是指不论是否满足触发条件都有波形显示, 无信号输入时显示一条水平线;
- ◆ 触发电平电平调整:通过信源波形视图区右侧的"T"按钮来调整触发位置,如图 8.11 所示,为 CAN-H 为信源时,将鼠标放在"T"按钮上,这时鼠标指针变为上下方向 的白色箭头,按住鼠标左键上下拖动鼠标即可(在拖动的过程中有一条横向的黄色 线条表明当前位置)。

备注:当黄色线条拖出波形范围时,触发位置将失效,整个波形界面处于禁止状态。

CAN 总线分析仪

图 8.11 触发电平位置

4. 调整水平系统偏移

调整水平系统的偏移可从整体上改变波形的位置,可通过拖动视图区顶部的"T"形按钮 来实现,如图 8.12 所示;或者也可以直接从菜单区的"水平系统"子菜单中的【时基】选项进 行设置。

图 8.12 水平系统偏移调整之前

调整后的波形如图 8.13 所示。

CAN 总线分析仪

图 8.13 水平系统偏移调整之后

5. 时间测量和电压测量

在菜单区的显示模块中将"时间测量"和"电压测量"勾选上,分别显示"测量"选中的信源之垂直测量线和水平测量线。如图 8.14 所示。

图 8.14 测量窗口

通过移动测量线来量测被测信号,量测值可显示在上方信息栏中,如图 8.15 所示。

图 8.15CAN 示波器_时间测量和电压测量

窗口:共用窗口是指所有波形在同一个窗口出现,一般只用于 DC 耦合时,有共同的参考。默认是分别窗口。

6. 保存波形

在波形视图区单击鼠标右键,从弹出的快捷菜单中选择【保存为图片...】按钮,可将当前波形保存为 BMP、JPEG、GIF、TIFF 和 PNG 等格式的图片,如图 8.16 所示。

图 8.16 保存波形

7. 终端电阻启用与去除

由于 CANScope 接入总线的位置与角色不同,所以是否启用终端电阻并入总线就需要根据实际情况,通常来说,如果对一个已有的系统进行测试,则需要去除终端电阻;如果对于 一个被测节点进行测试,则需要启用终端电阻。如图 8.17 所示。

A) 🖻 🔒	2 2 🗄	- 🔟 -					
S	开始	高级 打	Q文 测试	共享	波形	眼圈	示波器	PORT板
7	启用示波器	控制面板						
v	启用终端电阻							
数学者	纷							
	基本控制	stress						

图 8.17 终端电阻启用与去除

但是如果一条 CAN 总线上一个 120 欧终端电阻都没有,也是无法通讯的,对比图 8.18 的波形,可以看到 120Ω 终端电阻主要起到显性->隐性电平的加速放电作用,还有减小波形 过冲的作用,这说明终端电阻起到了一定的阻抗匹配作用。

图 8.18 终端电阻不连接与连接的 CAN 总线波形对比

8. 硬件差分和数学差分

在测试现场,外部测试环境可能比较复杂,所以 CANScope 特别具备了硬件差分的功能, 主要是在被测系统干扰比较严重,或者其参考地与 CANScope 供电的参考地不等同的情况下 **ZLG**

 $@2022 \mbox{ Guangzhou ZHIYUAN Electronics Co., Ltd.}$

CAN 总线分析仪

使用,如图 8.19 所示。软件默认是数学差分。

图 8.19 硬件差分和数学差分

8.1.3 眼图分析

眼图是逻辑脉冲的重叠,用于测量信号质量。通俗点,就是把所有的"0"和"1"叠加到一起,观测信号畸变程度的一种统计方法。

CAN 总线上可能同时挂接多个 CAN 节点,而不同的 CAN 节点可能会使用不同的收发 器和不同的波特率计算方法,而不同 CAN 节点的距离又不一定相同等原因,都有可能导致 信号畸变,从而影响到信号的正确接收,所以需要使用眼图分析的方法来查看传输的信号是 否符合,是否有风险。

例如 CAN-bus 的 ISO11898-1 规定显性逻辑的差分输入电压要大于 0.9V。如图 8.20 眼 图所示,如果要让 CAN 总线正常通信,眼图中灰色区域的幅值最小值不能小于 0.9V,而图 中测量到的眼高为 1.75V,是符合通讯要求的。

图 8.20 眼图分析

而在实际现场的眼图,由于每个节点的距离不同,导线分压等原因造成传输到测试点的 幅值不同,所以产生了很多条亮线。如图 8.21 所示。

CAN 总线分析仪

User Manual

图 8.21 远距离传输的眼图

从图中可以测得最小的眼高为 0.84375V,小于最小的 0.9V 限值,说明这个总线传输是 有问题的,至少存在不能被识别的隐患,现象就是错误帧增多,数据传输延迟。

用鼠标单击主界面上的"CAN 眼图"选项卡,可打开"CAN 眼图"界面,如图 8.22 所示。

图 8.22CAN 眼图界面

1. 保存眼图

在视图区单击鼠标右键,从弹出的快捷菜单中选择"另存为图片"命令,可将当前眼图保存为 bmp 格式的图片。

2. 眼图信息

如图 8.23 所示为视图区的眼图信息:

 $\textcircled{\sc c}2022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

Eye Info	Voltage		Quality	/
count :303.28K 200ns/div	one zero	: 2.72V : 0V	Qfact	:1 :0.47 dB
1V/div	ampl hght	: 2.71875V : 0.0625V	ER	:63 dB

图 8.23CAN 眼图_眼图信息

- ◆ Count: 当前已叠加的位个数;
- ◆ 200ns/div: 水平时基档位为 200ns/格;
- ♦ 1V/div: 垂直电压范围为 1V/格;
- ◆ One: 高电平值, 上边的亮线;
- ◆ zero: 低电平值, 下边的亮线;
- ◆ ampl: 眼幅度, 即 one-zero;
- ♦ hght: 眼高,眼幅度减去上下的模糊边界,只保留中心黑色区域;
- ◆ Qfact: 质量因子,眼幅度/(眼幅度-眼高),值越小表示信号抖动越大;
- ◆ SNR: 信噪比, 即 SNR = 20*log(qfactor);
- ◆ ER:消光比,即 ER= 10*log(pow(10,one)/pow(10,zero)), pow(10,one)等于 10 的 one 次方, pow(10,zero) 等于 10 的 zero 次方。

如图 8.24 所示,为常见的眼图测量参数。

图 8.24 常用眼图测量参数

注:只有 CAN 示波器自动量程完成后,才能启动 CAN 眼图,否则可能超出了边界而看不见眼图。

3. 载入模板

眼图模板用于检验和分析眼图的质量,查找碰撞到模板的电平和对应帧,从而查找出故障的源头。在菜单区的"眼图模板"模块中,单击【载入模板】按钮,可打开"眼图模板"窗口,如图 8.25 所示,在"眼图模板"窗口中,可以导入系统自带的标准模板,还可以导入自定义模板。

眼图模板				X
眼图模板:	E:\work\CANScope\CANS	tudioR\EyeTemplates.	.×ml	浏览
名称	通道	电压范围(V/div)	电压偏移(∀)	类型
ISO11898_10 ISO11898_10a	CAN-DIF a CAN-DIF	0.5 0.5	-1.25 -1.25	溗统模板 系统模板
删除自	定义模版	空自定义模版		保存
			∑Ĩ	
☑ 使用模板配	置示波器		<u>₽入</u>	取消

图 8.25CAN 眼图_载入模板

注:系统标准模板不可以删除,自定义模块可清空或删除。

4. 编辑模板

编辑模板功能允许用户编辑自定义眼图模板。设置自己规定的"禁区"。查找出异常波 形的对应帧。

在菜单区的"眼图模板"模块中,单击【编辑模板】按钮,展开右侧的编辑栏,如图 8.26 红色框所示。如果再次单击【编辑模块】按钮,则可以将编辑栏收起来。编辑栏有【导出模 板】、【添加多边形】以及【删除多边形】3个按钮。

图 8.26CAN 眼图_编辑模板

单击【添加多边形】按钮,在打开的"多边形"窗口里编辑,包括模板的时间位置和电压 位置。编辑完成后,单击【确定】即可,如图 8.27 所示。

边形		
多边形的边数	(: 6 💽	添加多边形
顶点编号	时间位置(%)	电压位置(V)
0	55.9	2.06
1	61.7	1.25
2	55.9	0.453
3	44.1	0.453
4	38.3	1.25
5	43.9	2.06
添加顶	点	清空 确定

图 8.27CAN 眼图_添加多边形

或者直接使用鼠标,在眼图上面拖动左键,绘制出一个矩形的模板,如图 8.28 所示。 框住一个区域,然后设置模板即可。

图 8.28 鼠标拖动左键设置矩形模板

单击【导出模板】按钮,可以将编辑完成的自定义模板保存下来。

5. 自动测量

自动测量是通过垂直测量线和水平测量线,自动给出眼宽和眼高的测量值。

在菜单区的"显示"模块中,单击【自动测量】按钮,可以显示垂直和水平两组测量线。 垂直测量线自动给出眼宽的值,水平测量线自动给出眼高的值,如图 8.29 所示。当眼图很

杂乱时,不建议使用自动测量,因为系统已经无法自动判断,这时直接勾选前面的时间测量 和电压测量,进行手动测量。

			时间测量 电压测量		
r 眼图					↓ ₽
Eye Info count ::899.264K 400ns/div 0.5V/div	Voltage one zero ampl hght	: 2V : 44.9mV : 1.95313V : 1.8125V	Quality Qfact :14 SNR :53 dB ER :45 dB	Time Measure X1 :0% X2 :100% X2-X1 :2us	Volt Measure Y1 :2.01V Y2 :232mV Y2-Y1 :1.8125
3.25 ^{50%} -30% 2.75V 2.75V	-10%	10% 3	0% 50% 7 2us	0% 90% 110%	130% 150%
1.75V 1.25V 48mV 48mV					1.78125∨
52mV					232mV

图 8.29CAN 眼图_时间测量和电压测量

6. 采样点位置评估

通过采样点位置评估,找到最佳采样点。在菜单区的"显示"模块中,单击【采样点】按 钮,自动给出最佳采样点与同步段的时间位置,并通过不同底色来分区,凸显出眼图的最佳 抽样区域,如图 8.30 所示。

图 8.30CAN 眼图_显示采样点

可以通过鼠标拖动采样点位置,结合眼图,查找出最合适的采样点位置。

7. 眼图轮廓

通过眼图轮廓,可以在干扰很强的眼图中查找出大部分点分布的区域,方便测量。在菜 单区的"显示"模块中,单击【眼图轮廓】按钮,如图 8.31 所示。

CAN 总线分析仪

User Manual

			Eye Info count :79.413 800ns/div 0.5V/div	Voltage K one : 2.21V zero : -3.88mV ampl : 2.21875V hght : 2.09375V	Quality Qfact :18 SNR :58 ER :51	Time N X1 dB X2 dB X2-X1	leasure Vol :-2.73% Y1 :97.3% Y2 :4us Y2-	t Measure 2.15V 58.6mV Y1 2.09375V		
3.17 ^{50%}	-30%	-10%	10%	30%	50%	70%	90%	110%	130%	150%
2.67V		-2.73%			4us		···· ·	+ 97.3%		
2.17V	2.15V	·····						1 w	· · · · · ·	
1.67V										
1.17V	2.09375V									
668mV									1999 (1999) (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999)	
168mV	58 6m)/	ann an Anna an Air a						Carlos Contes		
-332mV										
-832mV								-		
			M					MA		

V	时间测量	<u></u> ∔+	x x	
V	电压测量			
	鼠标测量	米秤点	根因半公康和	
		显示		

图 8.31 启动眼图轮廓功能

然后眼图自动进行统计学筛选,将出现最多的点保留下来。如图 8.32 所示。

			Eye Info count :79.413K 800ns/div 0.5V/div	Voltage one zero ampl hght	: 2.21V :-3.88mV : 2.21875V : 2.09375V	Quality Qfact SNR ER	/ ∶18 ∶58 dB ∶51 dB	Time N X1 X2 X2-X1	Measure :-2.73% :97.3% :4us	Volt Y1 Y2 Y2-Y	Measure :2.15V :58.6mV '1 :2.09375V			
3.17 ⁵⁰⁹	6 -30%	-10%	10%	30%		50%		70%	9	0%	110%	1:	30%	150%
2.67V		-2.73%				4us					97.3%			
2.17V	2.15V			_				_				_		
1.67V														
1.17V	2.09375V													
668mV														
168mV	50 0 V		144					_			<u></u>			
-332mV	58.6mV													
-832mV														
			JAL .								JAL .			

图 8.32 眼图轮廓效果

8.1.4 CAN 报文收发与统计

单击主界面上的"CAN 报文"选项卡,可打开"CAN 报文"界面,如图 8.33 所示。

CAN 总线分析仪

			Ŧ	CANScope-在线				
	T th	#55 招文 18	Ref. ## 1	277K 1878 7	Right PORT		界面(UD * 🕢	
		た時本 500 Kbps 長祥北 100:1 長祥本 50 M 采録		次時率 著 支送板 显				→ 菜単区
选项卡◀──	CAN报文 ×	😡 网络共享 🛛	CAN波形 III C	AN眼图 CAN	示波器		. × ×	
	A 14 14	*	动量程 🙆 自动运	育屏 🔽 清除过滤	🗙 清除列表 🔳		_	→ 内部工具条
	序号	时间	状态	方向	帧类型	数据长度	tiD 🔺	
数据过滤区 ◀━━	在此处输入 マ	在此处输入文字	▼ 在此处输入	▼ 在此处输入	☞ 在此处输入	▼ 在此处输入 ▼ 在	E此处输入	
	44, 244	00:35:48.199 756	成功	接收	标准数据响	3 20	он	
	44, 245	00:35:48.253 470	成功	接收	标准数据响	3 20	он	
	44, 246	00:35:48.305 752	成功	接收	标准数据响	3 20	он	
	44, 247	00:35:48.326 549	成功	接收	标准数据响	3 20	он	
	44, 248	00:35:48.388 817	成功	接收	标准数据响	3 20	он	
	44, 249	00:35:48.442 535	成功	接收	标准数据响	3 20	он	
	44, 250	00:35:48.494 804	成功	接收	标准数据帧	3 20	рн	* 粉根加图区
	44, 251	00:35:48.515 616	成功	接收	标准数据帧	3 20	он	━▶ 奴 / 加 州 图 스
	44, 252	00:35:48.577 866	成功	接收	标准数据帧	3 20	он	
	44, 253	00:35:48.641 371	成功	接收	标准数据帧	3 20	он	
	44, 254	00:35:48.703 843	成功	接收	标准数据帧	3 20	он	
	44, 255	00:35:48.767 373	成功	接收	标准数据帧	3 20	он	
	44, 256	00:35:48.829 632	成功	接收	标准数据响	3 20	он	
	44, 257	00:35:48.883 356	成功	接收	标准数据帧	3 20	он	
	44, 258	00:35:48.935 608	成功	接收	标准数据帧	3 20	рн	
	44, 259	00:35:48.956 434	成功	接收	标准数据帧	3 20	рн	
	44, 260	00:35:49.018 693	成功	接收	标准数据帧	3 20	он	
	44, 261	00:35:49.072 435	成功	接收	标准数据响	3 20	он	
	44, 262	00:35:49.124 684	成功	接收	标准数据响	3 20	он	
	44, 263	00:35:49.145 510	成功	接收	标准数据响	3 20	он	
	44, 264	00:35:49.207 766	成功	接收	标准数据响	3 20	он 🚽	
	•		111	False (1)	1 - AL +1 1mAL		•	
			设备:版本	(Pro)	采样	率:50 M 波特率:500	Kbps	

图 8.33CAN 报文窗口

1. CAN 报文收发

CANScope 的 CAN 报文收发是其最基础的功能,即实现对 CAN 总线数据信息的收集。 CANScope 记录报文为实时存储到 PC 硬盘,最大存储容量与用户 PC 硬盘大小有关,推荐 记录不超过 3 亿帧。用户打开 CANScope,将设备测量线接头接入被测系统(设备),注意 接线如果不正确则无法正确收发。环境连接好之后,CANScope 会默认进行自动的波特率匹 配,并且将匹配好的波特率,自动填入波特率配置框中,如图 8.34 所示。

如果不想自动匹配波特率,或者自动匹配波特率与实际的不符合,则需要将"侦测波特率"点击成禁止状态(不变橙色),然后用户可以在波特率配置框中选择所需要的波特率,如果需要自定义波特率,则勾选"自定义波特率"进行计算,如图 8.4 所示。

图 8.34 开机自动匹配波特率

在 CAN 报文界面点击"开启",这时 CANScope 默认进行一次示波器"自动量程",保证存储的波形是可以被正确观测的。这个自动量程时间内 CANScope 不存储任何波形,用户可以切换到 CAN 示波器界面,观看匹配过程,等待自动量程结束后,接收的报文左侧出现波形标志,即表示匹配结束,如图 8.35 所示。如果用户发现 CAN 示波器中的波形位置不好观测,则可以再次点击"自动量程"进行调整。

CAN 总线分析仪

	TAN报文 ×	🕓 网络共享 🔤 🤇	CAN波形 🚺 CAN	眼图 🖉 CAN示派	技器
	B 🔥 🐝 %	🎋 🙀 📄 🔳 📾 🖻	动量程 😂 自动滚屏	🛛 🗟 清除过滤 🖌	清除列表
	序号	时间	状态	方向	帧类型
	在此处输入… 🍸	在此处输入文字。	了在此处输入 字	在此处输入 字	在此处
开始 高级 报文 测试 共享 波形	176	00:00:04.628 253			标准数据
波特率 250 Kbps ▼ 🔲 自定义波特率	177	00:00:04.632 128	成功	发送	标准数据
采祥比 100:1 ▼ □ 总线应答	178	00:00:04.635 763	成功	发送	标准数据
开启 停止 采样率 20 M 侦测波特率	170	00:00:04.639 783	成功	发送	标准数据
控制 采集设置	<u>180</u>	00:00:04.643 499	成功	发送	标准数据
	181	00:00:04.650 212	成功	发送	标准数据
	182	00:00:04.652 725	成功	发送	标准数据
📲 🗈 🛛 🔏 % % 🙀 📄 🔳 自动量程 🧐 自动滚屏 🎅	183	00.00:04.654 793	成功	发送	标准数据

图 8.35 开启报文接收

如果用户需要发送数据,则可以在发送帧的框中,选择所要发送的帧内容,点击"发送" 即可,如图 8.36 所示。如果需要触发发送或者规则发送,则在本文 8.4 节中有详细描述。

类型	标准数据帧 ▼	数据 5	6 06 00 00 00 00 00 00	发送间隔	1 ms		
帧ID	656	重复次数	数 1	递增选择	帧ID和数据递▼		
DLC	8	发送次数	数 无限 🔹			友法	里油

图 8.36 发送报文

注:如果开启接收报文后,全部显示错误报文(红色),有可能是总线 CANH 和 CANL 接反,或者是 PORT 头的终端电阻没有使能,或者是使用 CANScope-StressZ 时没有恢复成初始状态(只有 120 欧使能, 并且启动 CANScope-StressZ)。

2. 报文统计分析

在测试任务中,最基础的工作就是对接收到的报文进行分析,以便于获知总线工作情况和数据内容概貌。CANScope软件为了方便这样的分析,专门在报文的工具栏中设置了"帧统计"功能,用户可以非常方便地进行数据统计。

首先需要点击报文"停止"按钮,确定要分析的对象样本,然后点击报文界面右上角的 "帧统计"功能,即出现帧统计框,对所有收到的报文进行分类统计,如图 8.37 所示,并 且可以"导出"成 EXCEL 报表。

注:为了保证数据正确性(因为自动匹配或者接线时可能会有异常数据),所以需要保证接线正确、自动匹配之后,点击"停止",然后再"开启"报文接收,以清除异常数据。记录一定时间的报文,推荐记录 1 万-10万帧作为一个评价基数。然后点击停止,进行下面的统计工作。

ZLG

CAN 总线分析仪

	6	2 5	⊞ ⊜	10 -	-									CANS	cope-离线		
U	开始	高级	报文	测词	式 共享	波	形眼	图	示波器	Ρ	ORT	2					
		Q	Q	Ð				\Rightarrow		¢.	城市	-		1			
标准	移动	放大镜	缩小	放大	全屏	开始	上一页	下一页	结束		序	₿ 开始	▼ 到 :	结束 🗸	🕃 刷新 📑 🗟 导出		^ 🔁 下
	模式			缩放			位	i.			项目	1		次数	三〇比	注释	
(2) M#	8共享 👔	I CAN		CAN	示波器	T CAN	·报文 ×				4	帧类型	빈	7,788	100.00		
EPS 1	4 +4 +	4 +4		-	+ = 10 6	10						— 扩	展数据帧	7,788	100.00		
	<u>•</u> ^• ^		* 💷		刀単柱 に	月初識	肝 10 准	陈江海	🗶 清呀		4	数据	く 度	7,788	100.00		
序号		时间]		状态		方向		帧			- 8		7,788	100.00		
在此处	输入	7 在山	心輸入す	(字)	7 在此处	输入	マ 在此	沙榆入	了在		4	状态		7,788	100.00		
	24	00:00	0:00.363	984	帧结束格	备式	接收					成	功	5,925	76.08	\	
	25	00:00	0:00.364	131	帧结束格	备式	接收			╇		- 1	結束格式错误	误 1,862	23.91		
100	26	00:00	0:00.364	278	帧结束格	备式	接收					$\mathbf{+}$	序号:25	1	0.01		
100	27	00:00	0:00.364	425	帧结束格	备式	接收						序号:24	1	0.01		
101	28	00:00	0:00.364	572	帧结束格	备式	接收					F	序号:25	1	0.01		
	29	00:00	0:00.364	719	№結果権	留式 モーン	接收					F	序号:26	1	0.01		
	30	00:00	0.00.304	867	○ 「 「 「 」 」 「 」 」 「 」 」 」 、 、 、 、 、 、 、 、	A⊐t ⊳_+	接收					H	序号:27	1	0.01		
	51	00:00	J:00.303	014	视结果和	AI	接収					+	序号:28	1	0.01		
	N波形 >	×										\vdash	序号:29	1	0.01		
			M	2.M2								H	序号:30	1	0.01		
					50us	.	100	uş	1	-		F	序号:31	1	0.01		
				111	111	111			1			-	序号:32	1	0.01		
C	AN-H	2.547 1.266	,×- nn	นกก	HANNA	างการ	Think		n C		4	1	序旦.00	1	0.01		
	AN-L	-15.63m 23.44m 3.906m -15.63m								L							
- C	AN-差分	2.547 1.258 -31.25m	×- ×- ×-		mnm		-1-11111	ւռու	nЛ_								
C	AN-逻辑	值		on n o o	1 0 0		0 0	1.10	0 1								
C	AN-分析	:	32	ExtID:.	. p. 4.	.900	1D	F 436									

图 8.37 帧统计框

根据帧统计结果可知,成功 CAN 帧占 76.08%,其它的都是错误帧,每种错误类型和百分比都一目了然。并且可以通过展开错误统计列表,双击错误报文的序号,定位到所对应报文的位置,点击对应报文即可查看对应 CAN 波形,进行错误原因分析。

CAN 状态成功率的统计结果分析,如表 8.1 所列。

表 8.1 总线成功率评价标准

成功率	状态
80%以下	工作状况不良(信号延迟、丢失等情况非常严重)
80%-90%	亚健康待整改(信号经常有延迟、丢失等情况)
90%-95%	可工作(信号偶尔有延迟、丢失等情况)
97%以上	工作状况较好(总线错误对通讯影响较小)

注:由于 CAN 的校验机制,保证了错误不会被 CAN 节点接收,但错误的报文也会占用总线时间,导致正确的报文延时或者总线堵塞,所以提高传输成功率就是保证系统工作正常。

3. 过滤数据

过滤数据功能用于过滤从设备采集回来的报文数据,即在报文视图区显示的数据。

如图 8.38 所示,可对采集数据进行过滤,每个过滤条件下方有一个对应的输入框"在此 处输入文字",在这个输入框中输入过滤条件,可在报文视图区查看过滤结果。

CAN 总线分析仪

序号	字号 时间 状态 传输方向			帧类型 数据长度				帧ID 帧数据			事件标记		注释						
在…	7	在此	7	在	7	在此处	7	在此	7	在此…	Y	在此…	7	在此…	7	在此	7	在…	7

图 8.38 数据筛选控制区

其中"序号、数据长度"使用完全匹配的方式,即输入的过滤条件必须和数据完全一样才 能匹配,例如:在序号过滤框中输入"1815",则只能匹配序号=1815的数据;

其它的使用非完全匹配的方式,即输入的过滤条件和数据的前面部分匹配即可,例如: 帧 ID 过滤框中输入"2e",则可以匹配所有包含"2e"开头的报文,如图 8.39 所示。

方向	帧类型	数据长度	帧ID	帧数据	事件标
在此处输入	▼ 在此处输入…	☞ 在此处输入	7 2e	▼ 在此处输入文字	了 在此处
		8	0CA2E006 H	99 49 92 00 00 08 2	
接收	扩展数据帧	8	0CA2E006 H	99 49 92 00 00 08 2	
接收	扩展数据帧	8	0CA2E006 H	99 49 92 00 00 08 2	
接收	扩展数据帧	8	0CA2E006 H	99 49 92 00 00 08 2	
接收	扩展数据帧	8	0CA2E006 H	99 49 92 00 00 08 2	
接收	扩展数据帧	8	0CA2E006 H	99 49 92 00 00 0B 4	
接收	扩展数据帧	8	0CA2E006 H	99 49 92 00 00 0B 4	
接收	扩展数据帧	8	0CA2E006 H	99 49 92 00 00 0B 4	
接收	扩展数据帧	8	0CA2E006 H	99 49 92 00 00 0B 4	
接收	扩展数据帧	8	0CA2E006 H	99 49 92 00 00 0B 4	

图 8.39 数据筛选

4. 查找数据

查找数据功能用于对采集的数据进行查找,在"查找"窗口中配置,如图 8.40 所示, 打开"查找"窗口有两种方式:一是在报文的"**工具**"模块中,单击【查找】按钮;二是在数 据视图区右击打开的快捷菜单中,单击【查找...】命令。

查找			х
	┌条件 ───		
	帧类型:	标准数据帧 🔹 数据长度: 8 💌	
	亊件标记:	<tr	
	帧ID:	012	
	帧数据:		
	注释:		
		(帧ID和数据与列表中的字符匹配,支持正则表达式)	
	恢复默	查找成功,序号2067。	
	上一个	下一个 停止查找	

图 8.40 查找窗口

在"查找"窗口中设置查找条件,设置完成后,单击【上一个】或者【下一个】按钮,软件将自动从数据视图区中查找数据,如果有找到符合条件的项,会出现提示信息,如图 8.40 红色矩形区域所示,返回视图区,查找到的报文会高亮显示,如果没有找到,将给出"没有 找到下一个"的提示。

CAN 总线分析仪

8.1.5 CAN 波形记录与分析

波形记录的意义就在于可以"回家再分析",就是说现场只要记录即可,不需要在现场进行分析。单击主界面上的"CAN 波形"选项卡,可打开"CAN 波形"界面,如图 8.41 所示。

图 8.41CAN 波形界面

1. CAN 波形记录与保存

CANScope 默认开启波形记录功能,如果用户将图 8.42 中的 "PORT 板"的 "启用示 波器"的勾选去掉,则波形记录就失效,所记录的波形为乱码。

图 8.42 启用示波器与波形记录

通常为了方便报文与波形对照查看,可以在选项卡右边右击鼠标,选择新建水平选项卡组,如图 8.43 所示。

ſ	T CAN报文 ×	🕓 网络共享 🛛 C/	AN波形 🚺 CAN	限图 📃 CAN示波	技器		
I						📑 👬 🏧 🔲	-
		🔨 🎮 🚊 🖷 日初	1 量程 📴 日动滚屏	∑清除过滤 🗙	清除列表 49	新建水平选项卡组(H)	
	序号	时间	状态	方向	帧类型	新建垂直洗项卡组(1)	
	在此处输入… 🍸	在此处输入文字 🍸	在此处输入 了	在此处输入… 🍸	在此处输入…	▼ 在此处输入 ▼ 在此处	输,
	7 769	00.01.04 265 504	ct)TH		计屈滞性显示	0 0050550	DE

图 8.43 新建水平选项卡

然后就可以点击有波形标准的报文,对应查看波形,如图 8.44 所示。

CAN 总线分析仪

🛞 网络共享 🔤 CAN波	形 🗙 🗊 CAN眼图 🔳 CAN	示波器		
	<u>M2.M2</u>			
	50us	100us	150us	200us
2.547V - CAN-H 1.266V - -15.63mV -	ուտեւեր	www.ml_		
		2 281/		
2.547V - CAN-差分 1.258V - -31.25mV -	nn an an mhananaaan	11111111112.054V		
─ CAN-逻辑值				
CAN-分析	23	00		
···· CAN报文 ×				
B A X X X X	📄 🔳 自动量程 😂 自动滚用	🛛 🔽 清除过滤 📝 清		
序号 时间	状态	方向	帧类型	数据长度
在此处输入 🍸 在此处	輸入文字 🍸 在此处输入… 🦻	′在此处输入… 🭸	在此处输入… 🍸	在此处输入…
7,768 00:01:04	4.365 504 成功	接收 打		8
7,769 00:01:04	4.384 050 成功	接收 打	广展数据帧 (3
7,770 00:01:04	4.453 606 成功	接收 打	广展数据帧 (3
7,771 00:01:04	4.459 843 成功	接收 打	广展数据帧 (8

图 8.44 报文与波形对应查看

由于波形数据量比较庞大,以 USB2.0 (480M)的速度,也不能实时全部传到 PC 机, 故在运行时,波形数据全部存于 CANScope 设备中,只有当用户点击某一个带波形的报文, 才上传这一报文的波形,或者用户点击【报文】选项卡中的"停止",然后再点击"保存", 勾选"保存波形数据"方可将全部波形数据从 CANScope 设备中传到 PC 保存。

	[1] 计算机 ▲ 本地磁盘 (C:) → 新加巻 (D:)	
→ 2 → 2 → 2 → 2 → 2 → 2 → 2 → 2 → 2 → 2	文件名(N): <mark>CAN1218150115.can</mark> 保存类型(T): CANScope 工程(*.can	•
开启 保排比 100:1 ▼ 投制 采料率 50 M	● 隐藏文件夹	⑦ 保存波形数据(W) 保存(S) 取消

图 8.45 波形保存

2. CAN 波形查看

在波形界面中,默认的是 CANH、CANL、CAN 差分、CAN 逻辑、CAN 分析 4 个展示 方式,如图 8.46 所示。

CAN 总线分析仪

图 8.46 CAN 波形展示

用户可以点击"波形设置"菜单,如图 8.47 所示。

	1 C	1 🖬 🧉	83	10 -						CANScope-在线	
	开始	高级	报文	测试	共享	波形	眼圈	示波器	PORT板		
「ななな」を注	修 动	○ 放大镜				✓ ──────────────────────────────────) 结束			 日本 日本 日本 日本 日本 日本
	模式			缩放			位置		视	图 图	波形设置

图 8.47CAN 波形_属性设置

◆ 属性:单击可打开波形属性窗口,如图 8.48 所示,在 CAN 波形"波形视图区", 右键快捷菜单中选择"属性"也可以打开该窗口。

皮形设置							-X
- CAN逻辑值	[\ \			~)
差分比较	防式 <	•	🔲 指定比	较电平 <mark>(V)</mark>	1		
提示: 栀 CAN逻辑	据差分比较 值为1或0。フ	方式,当 <mark>CAN</mark> 不指定比较电	嗟分大于或小 ,平时软件将自	\于指定比较吗 I动计算。	电平时,		
显示名称	CAN-H	CAN-L	CAN-差分	CAN-逻辑	CAN-分析	CAN-共模	添加
CAN-H	☑ 显示	口显示	口显示	🗆 显示	🗆 显示	口显示	muk÷
CAN-L	口显示	🗹 显示	口显示	口显示	口显示	口显示	
CAN-差分	口显示	口显示	☑显示	口显示	口显示	口显示	上移
CAN-逻辑	口显示	口显示	口显示	🗹 显示	口显示	口显示	
CAN-分析	口显示	口显示	口显示	口显示	☑显示	口显示	下移
CAN-共模	口显示	口显示	口显示	口显示	口显示	口显示	
							确定
							取消

图 8.48CAN 波形_波形属性窗口

波形显示默认有五组波形通道,显示名称为:CAN-H、CAN-L、CAN-差分、CAN-逻辑、CAN-分析,波形默认显示为本身对应的波形。

每一路通道可以显示五种类型的波形,可以自由配置需要显示的波形。例如:在 CAN-差分通道中勾选"CAN-H"和"CAN-差分",那么将在波形视图区 CAN-差分通道中显示 "CAN-H"和"CAN-差分"两种波形。设置完成后,返回 CAN 波形窗口,在 CAN-差分通道已 经可以看到"CAN-H"和"CAN-差分"叠加后波形,如图 8.49 中红色矩形区所示。

CAN 总线分析仪

图 8.49CAN 波形_波形显示

一般来说,如果 CAN 示波器中使用 DC 耦合方式,记录下来的波形才有进行叠加对比的意义,否则只是对比峰峰值。

如果将属性中的"CAN 共模"选中,则可以在波形界面的最后出现 CAN-共模的波形,这是叠加在两线上面的 CAN 共模信号,主要用于分析干扰信号频率和特征,如图 8.50 所示。

显示名称	CAN-H	CAN-L	CAN-差分	CAN-逻辑	CAN-分析	CAN-共模
CAN-H	☑ 显示	口显示	🗆 显示	口显示	口显示	口显示
CAN-L	口显示	☑ 显示	口显示	口显示	口显示	口显示
CAN-差分	口显示	口显示	🗹 显示	口显示	口显示	口显示
CAN-逻辑	口显示	口显示	口显示	🗹 显示	口显示	口显示
CAN-分析	口显示	口显示	口显示	口显示	☑ 显示	百里苏
CAN-共模	口显示	口显示	口显示	口显示	口显示	☑ 显示

图 8.50 CAN-共模波形

3. CAN 波形测量

CANScope 提供了非常灵活的波形测量手段,可以通过鼠标停留,测量出当前鼠标停留 处波形的幅值与所处逻辑电平的位宽,如图 8.51 所示。

图 8.51 鼠标测量

或者可以通过移动电压幅值和时间脉宽测量线,测量出所需要的信息。如图 8.52 所示

图 8.52 电压和幅值测量

可通过键盘的 Ctrl,然后点击鼠标左键,放大波形,如果点击鼠标右键,即缩小波形。 鼠标滚轮向前,窗口即往波形帧头移动,鼠标滚轮向后,窗口即往波形帧尾移动。

在波形测量前,需要确定 CAN 示波器的测量的耦合是 AC 耦合还是 DC 耦合,如图 8.53 所示,为同样节点发出报文的 CANH 波形,由于耦合方式不同,左图为 AC 耦合 (CANH 变化的幅值,隐性电平时 CANH 电压为参考),电压测量为 1.466V;右图为 DC 耦合 (对信 号地位参考),电压测量为 3.62V。

图 8.53 AC 耦合和 DC 耦合设置

◆ 放大镜

选中菜单区的【放大镜】按钮,然后将鼠标移动到波形视图区,这时鼠标变成"十"符号,同时出现一个透明的矩形框,如图 8.54 所示。

图 8.54 放大镜矩形区

移动鼠标将透明矩形框放到要放大的波形处,这时滑动鼠标的中间按钮,可放大和缩小透明矩形区范围内的波形。

另外,将鼠标放在波形视图区域,然后按下鼠标【Ctrl】键,这时鼠标变为放大镜图标 样式,单击鼠标左键(同时保持 Ctrl 键为按下状态),可放大波形。

◆ 放置/增加标签

放置标签:在波形视图中单击鼠标右键,从弹出的快捷菜单中选择"放置标签",从"放置标签"的子菜单中选择想要放置的标签即可。也可以选择"更多标签"打开"标签"对话框(如图 8.55 所示),从中选择更多要放置的标签。

图 8.55 标签窗口

增加标签:在想要增加标签的位置单击鼠标右键,从弹出的快捷菜单中选择"增加标签" 命令可增加标签,同时可以在"标签"窗口中查看新增加的标签。

◆ 转到标签

波形视图在放大,移动过程中会使现有标签移动到当前窗口显示区外,这样很难定位窗 口外的标签。通过转到标签功能可以解决这个问题。

到特定标签:从波形视图区的右键快捷菜单中选择命令"到触发点/到数据开始处/到数据结束处",可转到对应的标签位置。

到标签:从波形区域的右键快捷菜单中选择命令"到标签",从其子菜单中选择要转到的标签即可。如果子菜单中没有找到想要的标签,可以选择"更多标签..."命令,打开标签窗口,从中选择标签,如图 8.56 所示。

放置标签 増加标签 (Q) 删除标签 (D) 删除所有标签 (A)	•	
到标签 到触发点 (T) 到数据开始处 (B) 到数据结束处 (E) 移到底部 (S)		更多标签 M1 M2 M3 M4
属性 (£)		

图 8.56"到标签"命令

◆ 底层标签

当同一个位置有多个标签重叠时,可在标签上单击鼠标右键,从快捷菜单中选择"移到 底部"命令将当前标签移动到底层,从而使下一层标签移到顶层变为可视状态。示例:标签 M1 和 M2 重叠在一起,如图 8.57 所示。

图 8.57 重叠的标签

如图 8.58 所示,将鼠标放在标签上,此时鼠标变为白色双向箭头,单击鼠标右键,从 弹出的快捷菜单中选择"移到底部"命令。

图 8.58 将标签移到底部的操作过程
可以观察到标签M1被移到底部,原来在M1下一层的标签M2显示出来成为当前标签, 如图 8.59 所示。

图 8.59 移到底部操作成功

◆ 移动标签

将鼠标放在标签上,这时光标变为白色双向箭头,按住鼠标左键左右移动鼠标即可。

如果鼠标在波形区域,那么按下鼠标左键移动鼠标时会出现十字标识符: , , 释放鼠标标 签将转换到标识符所在位置。

◆ 具体波形块

在波形视图区,按下鼠标左键拖动鼠标,可看到鼠标移过之处出现一个透明的矩形,如 图 8.60 所示,随着鼠标的移动,矩形随之变化,当释放鼠标左键时,将出现一个快捷菜单, 选择菜单中的命令可对矩形区进行操作。

图 8.60 在波形视图区拖动鼠标

◆ 电压测量

在菜单区内的"视图"模块中,将"电压测量"前面的勾选框勾选上,在波形视图区会 出现两条水平测量线,默认位置为 CAN-DIFF 波形通道处,量测电压时,将鼠标放到测量 线上,会出现一个双向箭头,按住鼠标左键上下拖动测量线,可以在视图区任意水平位置内 拖动,在拖动的同时,测量线的电压值也会随着变化,如图 8.61 所示。

ZLG

图 8.61CAN 波形_电压测量

8.1.6 CAN 报文重播(录播)

CANScope 分析仪具有报文重播功能,即可以将现场 CAN 系统或者设备发送出来的现场数据进行完整"录像",然后在实验室模拟 CAN 系统或者设备将报文数据完整地发送到 CAN 网络。

这个功能主要用于当被测系统或者对象报文的逻辑关系还是未知情况下,通常需要先将 其录下来,然后按照其规则再反复重播,掌握其规律,可以用于分析 CAN 应用层协议,或 者是在加入新节点前所进行的网络仿真。

在 CAN 报文中先导入保存的工程,然后在报文区,右击选择"全部添加到重播列表", 如图 8.62 所示。

图 8.62 添加报文到重播列表

然后,再点击"重播"弹出框中选择"播放",这些记录数据即从 CANScope 发出到 CAN 总线上。这些报文的时间间隔是严格按照先前接收的时间顺序排列,如图 8.63 所示。用户可以选择全部播放或者在帧前面勾选部分进行播放,也可以输入发送次数。

CAN 总线分析仪

报文	测试	共享 波形	眼圈 示波器	PORT板			
Kbps	-	□ 自定义波特率	类型 标准数据帧	▼ 数据 CD 4D 01	00 00 00 00 00 发送间隔 1 ms	时间显示 相对时间	- 🔜 📑 🔍 較比较
:1	-	🗌 总线应答	帧ID 5CD	重复次数 1	递增选择 帧ID和数据说 *		
N	_	佔派版特定	DIC 8	发送次数 无限	*	久达 王浩 教掘昆示 十六讲制	▼ ■23 988607 / 总线和
	采 重播/	师记表					
共享(🔤 i 👒 🖠	送 🕨 播放	🔓 🖡 λ 🗋 导出	🛂 添加 🏄 删除	🌃 全选 🕼 反选 发送次数 🛽		
	「「「「「「「「」」」	1×	突型	数据长度	帧ID	帧数据	时间间隔(ms)
		1 扩展	展数据帧	8	0CF0041A H	00 00 00 64 00 00 00 00 H	0
*) +>-		2 扩展	展数据帧	8	OOFEEE01 H	01 01 00 00 00 00 00 00 H	16
		3 扩展	展数据帧	8	00F00302 H	00 00 01 00 00 00 00 00 H	6
.753 7	⁵⁶	4 扩展	展数据帧	8	OOFEEF03 H	00 00 00 01 00 00 00 00 H	13
.756 9	22 🛛 🗹	5 扩展	屢数据帧	8	00FEF704 H	00 00 00 00 00 00 64 00 H	8
.763 5	88 🛛 🔽	6 扩展	國数据帧	8	00FEE505 H	01 00 00 00 00 00 00 00 H	10
.766 6	40 🛛 🔽	7 扩展	屢数据帧	8	00FEF606 H	00 00 01 00 00 00 00 00 H	8

图 8.63 重播操作

如果用户需要在重播列表中添加新的发送帧,可以选中需要发送时刻之前的重播帧,然 后点击菜单上面的"添加",可以设置帧 ID、类型、数据信息、与前一帧的时间间隔等参数, 如图 8.64 所示。

重播/帧列表	重播/帧列表									
🛛 🔤 发送 🕨 擂	誠 🔓 导入 📓	导出 襑 添加 🌾 册	删除 🌃 全选 🕼 反选 发送》	マ数 1						
序号	帧类型	数据长度	帧ID	帧数据	时间间隔(ms)					
✓ 11340	扩展数据帧	8	0CF0041A H	00 00 00 40 D5 00 00 00 H	3					
✓ 11341	扩展数据帧	8	00FEE505 H	CF 09 00 00 00 00 00 00 H	4					
11342	扩展数据帧	8	00F00302 H	00 00 2A 00 00 00 00 00 H	4					
✓ 11343	扩展数据帧	8	00F00302 H	00 00 2B 00 00 00 00 00 H	5					
11344	扩展数据帧	8	0CF0041A H	00 00 00 A4 D5 00 00 00 H	6					
✓ 11345	扩展数据帧	8	00EEE505 U	D0.09.00.00.00.00.00.00.H	3					
• • • 11346	标准数据帧	8	000 H	00 00 00 00 00 00 00 H	13					
✓ 11347	扩展数据帧	8	00F00302 H	00 00 2C 00 00 00 00 00 H	3					
	TT CHARTER P	-	and the second s	* * * * ** ** ** ** ** ** ** **	~					

图 8.64 重播添加新帧

8.1.7 FFT 共模干扰频谱分析

CAN 总线虽然有强大的抗干扰和纠错重发机制,但我们要认识到,由于最早 CAN 是被应用于汽车行业,而汽车内部的电磁环境并不恶劣,最高电压很少超过 36V,但目前 CAN 被大量应用于其它很多行业,比如轨道交通、医疗、煤矿、电机驱动等,而这些场合的电磁环境则恶劣许多,所以目前 CAN 的非汽车现场应用中,被干扰导致的异常占 30%之多。

所以排查干扰是我们检查和评估 CAN 总线通讯异常的必需步骤。一般干扰分为正弦频 率干扰与周期脉冲干扰。针对前者 CANScope 提供 FFT 分析,即傅里叶变换,把信号进行 频域上面的分解,并且能滤除正常信号,这样就可以很方便地看出干扰频率。

如果是周期脉冲干扰需要人工在波形中发现与测量,这个多发生在有电磁阀、继电器、 或者电流周期通断的场合,在变化的时候产生很强的耦合信号导致 CAN 通讯中断。

CANScope 提供了 2 钟 FFT 分析方法:

1. CAN 示波器实时 FFT 分析干扰频率

将 CANScope 连接到 CAN 网络,打开 CAN 示波器,菜单中"FFT"选择一个测量通道, 比如这里选择 CAN-DIFF,如图 8.65 所示。

图 8.65 实时 FFT 分析

然后在波形图中,即可查看到当前的 FFT 分析的情况,图 8.66 所示是没有人为加入干扰频率的差分信号 CAN_DIFF 的波形及其 FFT 分析结果,当在 CAN_H 信号线人为加入频率为 400KHz 的干扰信号,差分信号 CAN_DIFF 的波形及其 FFT 分析如图 8.67 所示,在 400KHz、800KHz 等位置可以看出存在干扰。

图 8.66 无干扰频率的差分信号 CAN_DIFF 的波形及其 FFT 分析

图 8.67 加入干扰频率的差分信号 CAN_DIFF 的波形及其 FFT 分析

来,如图 8.68 所示。

图 8.68 实时 FFT 幅值排列

2. CAN 波形记录 FFT 分析干扰频率

通常情况下,在现场进行实时 FFT 分析准确度难以保证,所以使用存储的 CAN 波形记录进行 FFT 分析是最常用的手段。因为这个分析必需要有波形,而 CANScope 最多存储 1.3 万帧波形,所以建议是在整个系统满负荷工作情况下,再启动 CANScope,这样取得 1.3 万帧的波形比较有代表意义。

如果是单帧分析,即点击 CAN 报文中有波形的任意一帧,然后切换到 CAN 波形中(或者使用新建水平窗口),即可看到这帧的波形,点击右上方的"FFT 分析",如图 8.69 所示。

图 8.69 单帧 FFT 分析

随即弹出分析结果,选择"CAN 共模"的方式,可以滤除正常信号,让干扰信号水落 石出,右边表格排列的是干扰频率的排名,只需关心幅值最高的频率即可,如图 8.70 所示。

CAN 总线分析仪

图 8.70 波形记录 FFT 分析

但对于现场排查故障的工作来说,单帧分析无法全面了解干扰的情况,所以在 CAN 报 文界面的工具栏中,有 "FFT 共模干扰"的统计分析,如图 8.71 所示。

图 8.71 FFT 共模干扰工具

点击后,即出现"共模干扰统计"框,设置好干扰幅度门限(默认为0.2V),点击开始统计即可,软件自动将干扰幅值从大到小进行排序,用户也可以双击进行对应帧查看,同时将最有可能的干扰频率显示出来,如图8.72所示。

F扰幅度	门限(V) 0.2	最可能的	的干扰频率在1.24228M阶	近
序号 幅度(V)		频率(HZ)	фдID	
48979	0.298	1.24034M	PHO AL	
49210	0.255	1.19643M	0x0E07FF07	l
48022	0.249	1.22501M	0x0F03FF0C	
47774	0.237	1.23704M	0x0E05FF0B	
47606	0.235	1.24436M	0x0E05FF05	
47885	0.235	1.22388M	0x0E07FF01	
46565	0.232	1.24444M	0x0E07FF0C	
42819	0.228	1.2239M	0x0E05FF0A	
47568	0.227	1.21392M	0x0E05FF04	
48850	0.227	1.24648M	0x0E06FF0C	
46920	0.225	1.20522M	0x0E07FF0A	
48711	0.225	1.2252M	0x0E07FF04	
47462	0.224	1.225M	0x18FF19F4	
47809	0.224	1.2832M	0x0000FF41	
50452	0.223	1.23704M	0x0F01FF03	
49307	0.223	1.24815M	0x0F00FF01	
47800	0.222	1.275M	0x0E06FF06	
38758	0.222	1.26259M	0x0E05FF0C	

图 8.72 共模干扰统计结果

可见,这个波形主要受到 1.2422MHZ 左右的正弦频率干扰,幅值可高达 222mV,一般 来说如果超过 200mV 即有影响正常通讯的风险(CAN 显性电平为 0.9V,一般需要高于 1.1V 才能保证基本的通讯)。找到干扰频率后,我们需要查看系统中哪些部件是这个频率,这样 我们可以针对性做解决方案。

如果是周期脉冲性干扰,在 FFT 变化后,由于不是正弦的信号,所以大部分能量还是 集中在 0HZ,所以这个情况下需要人工进行测量,如图 8.73 所示,这个周期性的脉冲是 20KHZ,但用 FFT 的结果是看不出来的。

图 8.73 周期性脉冲干扰 FFT 无法分析

8.1.8 传输延迟分析与导线等效长度预估

CAN 总线主要制约其传输距离的,就是总线传输延迟,因为导线通常延时为 5ns/m,还 有隔离器件的延时,所以导致应答位破坏了发送节点所预定的应答界定符,导致位错误,或 者是因为延时导致重同步失败,导致 CRC 校验错误,所以制约了通讯距离,如图 8.74 为总 线延迟的危害。

图 8.74 总线延迟的危害

延时有各方面的原因,如导线材质(镀金的0.2平方毫米线相当于1.0平方毫米的铜线)、 CAN 收发器与隔离器件(比如光耦的延时高达 25ns,而磁隔离只有 3-5ns)。

如图 8.75 所示即为一个由于延时导致的错误。由于 ACK 界定符被前面的应答场严重压缩,导致被某个节点识别为显性(原本是隐性),所以这个识别错误的节点后面发出了错误帧,进行全局通知,让发送节点重新发送。因此控制延迟,留有裕量是保证 CAN 通讯质量中很重要的因素。

图 8.75 传输延迟导致的错误

CANScope 软件中提供了传输延迟测量的功能,可以进行单帧的延迟测量,也可以进行 所有波形的延时统计,同样,本分析需要对波形先进行记录。

1. 单报文传输延迟测量

点击 CAN 报文中有波形的任意一帧,然后切换到 CAN 波形中(或者使用新建水平窗口),即可看到这帧的波形,点击右上方的"传输延迟测量",如图 8.76 所示。

图 8.76 单帧传输延迟测量

随即弹出分析结果,传输延迟包括了导线延迟和收发器(隔离器件)的延迟。其范围为 最小延迟~最大延迟,如图 8.77 所示。

图 8.77 单帧传输延迟测量结果

2. 所有报文延时统计

在记录好的 CAN 报文界面中的工具栏中,找到"传输延时"的统计分析,点击即可进行延时分析,如图 8.78 所示。

图 8.78 传输延时统计

统计完毕后,会得到一个延迟列表(延时从大到小排列),如图 8.79 所示,可以点击对 应的序号定位到对应的帧。

- TT (CAN报文 ×	🜔 网络共享 🛛 🔤	CAN波形		CANI	🗏 🔳 C	AN示	波器					
Pa	* * *	* 📈 🖹 🛤	自动量程 🔁 🖻	쾨	滚屏	────────────────────────────────────	澽	清除列	表词				
序号	3	时间	状态			方向		帧类	型		数据长度		帧ID
在山	收输入… 🥱	• 在此处输入文字	▼ 在此处输。	λ	. 7	在此处输入	\ \?	在此	处输入…	Y	在此处输入…	Y	在此处输入
m	152,036	00:12:03.195 558	 成功		ž	食收		扩展数	如据帧	8			09C36610 H
M	152,037	00:12:03.195 718	成功	<u>į</u>	就传	俞延时							x
w.	152,038	00:12:03.195 878	成功	Г									
-m	152,039	00:12:03.196 039	成功		项目			i	最大延时	t i	对应序号		
W	152,040	00:12:03.196 199	成功			0x9C3661	0	ţ,	500ns		152036		Ξ
1	152,041	00:12:03.196 359	成功			0x9C365F	0	ļ	500ns		152032		
100	152,042	00:12:03.196 529	帧结束格式			0x9C365B	0		500ns		155635		
1	152,043	00:12:03.196 692	帧结束格式			0x9C3657	0	5	500ns		152026		
<u>m</u>	152,044	00:12:03.196 846	成功			0x9C3655	0	5	500ns		155629		
w	152,045	00:12:03.197 007	成功			0x8E2FF9	F	5	500ns		155673		
-	152,046	00:12:03.197 168	成功			0x9C3653	0	5	500ns		154014		
<u></u>	152,047	00:12:03.197 328	成功			0x9C3651	0		500ns		155624		
<u> </u>	152,048	00:12:03.197 488	成功			0x9C364F	0		500ns		155622		
1	152,049	00:12:03.197 648	成功			0x9C364D	0	ļ	500ns		154009		
	152,050	00:12:03.197 816	帧结束格式			0x9C364B	0	:	500ns		155620		_
-00	152,051	00:12:03.226 975	DK-5刀 **エム			0x9C3671	0	5	500ns		152048		
	152,052	00:12:03.277 242	56.473 cttrts			0x9C3649	0	ţ	500ns		154761		_
	152,053	00.12.03.284 219	лж-9/J ctt:th			0x9C3647	0		500ns		155613		_
201	152,054	00.12:03.300 223	ETT			0x9C3645	0	ļ	500ns		155225		_
200	152,055	00.12:03:306 859	していたい 日本Th			0-0-3643	0		500nc		150614		-
	102,000	00.12.03.320 700	146-93 										工力会经济计
												-7	1 2012/01/1

图 8.79 传输延时统计结果

这个范围中,最大延时是指在此测量点测到的最大延迟节点的传输延迟,要控制小于 0.245 倍位时间,比如 1M 波特率,要控制最大值小于 245ns,否则会有应答错误风险。

0.245 这个值的计算方法是:因为传输是来回,所以 CAN2.0B 协议规定,传输延迟如果达到 0.5 倍的位时间,这时的传输距离是理论上的最大传输距离,为了保证可靠,我们要控制在 70%的理论传输距离,但现在我们一般在每个节点上面都加了隔离,所以即使发送节点发出来的报文,就已经带有延时了,所以计算就要 0.5*0.7*0.7=0.245,才能保证一个稳定运行状态。

由于总线上面挂接的节点距离测试点都不同,所以引起的延时都不一样。为了检测出总 线最大的延迟,通常建议测试点放在总线最远两端,测试的对象也是总线最远两端的两个节 点发出来的报文,如图 8.80 所示。

图 8.80 最远端测量总线延迟

这样可以研究到总线的最大延迟。例如:假定测量延时的这个帧,是最左边节点发出的,测量点如果在发送节点这端,则最大应答延迟为整体导线延迟+最远端节点(即最右端)的电路延迟(包括隔离器件与收发器延迟);测量点如果在最右端,则最大应答延迟只包含这个最右端节点的电路延迟(包括隔离器件与收发器延迟)。

所以用这个方法也可以测量某个节点的电路延迟。或者可以通过延迟测量出导线的等效 长度,即最大延迟÷(2×5ns/m),图 8.81 框选的导线等效长度即是根据此公式计算的。根 据波特率计算的最长等效传输距离公式:(位时间×0.2)/(5ns/m)。

项 目	最大延时	对应序号	
0x09C36610	500ns	152036	1
0x09C365F0	500ns	152032	
0x09C365B0	500ns	155635	
0x09C36570	500ns	152026	
0x09C36550	500ns	155629	
0x08E2FF9F	500ns	155673	
0x09C36530	500ns	154014	
0x09C36510	500ns	155624	
0x09C364F0	500ns	155622	
0x09C364D0	500ns	154009	
0x09C364B0	500ns	155620	
0x09C36710	500ns	152048	
0x00030490	500ns	154701	
>此系统的导线长度等炎 浅长度,按5ns/m计算规 >此波特率的实用最长等	如为50米,包括隔离 则。 预试传输距离为40米	器件与收发器延时等 。	較的 男

图 8.81 延时测量出等效导线长度

8.1.9 波形边沿斜率与带宽分析

测试 CAN 节点信号边沿的上升/下降时间,上升/下降斜率,以及带宽,是表征信号波 形质量好坏的重要指标。

斜率太小导致位宽度畸变,影响通讯质量,如图 8.82 所示,原本 100us 的位宽,由于边沿太缓,变成了 93us。

图 8.82 斜率过小导致波形畸变

而斜率太大会造成信号反射,波形失真,导致收发器采样出错,然后在汽车电子等产品 在做 CE、3C、整车厂等认证时,EMI(辐射)指标无法通过,如图 8.83 所示。

图 8.83 斜率过大导致 EMI 超标

所以对 CAN 波形的边沿斜率测量有着重要的实用意义。

1. 单波形边沿测量

信号边沿测量主要针对的是波形进行测量,所以也需要先记录一定量的数据和波形,然 后点击某个报文,切换到单独的波形界面,点击"边沿测量",如图 8.84 所示。本测试要保 证总线两端各加有一个 120 欧终端电阻,否则测试结论无效。

图 8.84 边沿测量

由于考虑到不同机构的标准,边沿区间可以进行对应的选择,默认 20%~80%,即边沿 计算斜率的时间,是波形电压的 20%~80%这个区间,也可改成 10%~90%,即如图 8.85 所 示。

图 8.85 边沿区间

2. 边沿统计

为了体现出整体总线的波形边沿情况, CANScope 在 "CAN 报文"界面的"工具"栏 中添加了"边沿统计"功能, 如图 8.86 所示。

图 8.86 边沿统计功能

即对所有存储的波形进行统计,然后可以进行按带宽、上升时间、上升斜率、下降时间、 下降斜率和帧 ID 进行排序,如图 8.87 所示。以此可以统计出本总线的极限值,与其对应的 报文。

边沿统计						×
边沿区间	20%~80%	•	排序	帯宽 ▼ 帧D	升序 ▼	
帧ID	上升时间	上升斜率	下降时间	上升时间 上升斜率	带宽	^
0x09C36	101ns	8.91 V/us	113ns	下降时间	3.47328M	
0x09C36	101ns	8.92 V/us	113ns	带宽	3.47328M	
0x09C36	101ns	8.99 V/us	113ns	8 V/us	3.47518M	
0x09C36	101ns	9.02 V/us	115ns	7.91 V/us	3.47682M	
0x09C36	100ns	9.02 V/us	111ns	8.13 V/us	3.48605M	
0x09C36	100ns	8.99 V/us	112ns	8.05 V/us	3.48605M	
0x09C36	100ns	8.86 V/us	113ns	7.85 V/us	3.48605M	
0x09C36	100ns	8.93 V/us	114ns	7.87 V/us	3.48605M	
0x09C36	100ns	8.9 V/us	113ns	7.87 V/us	3.48659M	
0x09C36	100ns	8.94 V/us	111ns	8.07 V/us	3.48659M	
0x09C36	100ns	8.76 V/us	114ns	7.72 V/us	3.48754M	
0x09C36	100ns	8.89 V/us	116ns	7.71 V/us	3.5M	
0x09C36	100ns	8.9 V/us	114ns	7.78 V/us	3.5M	Ŧ
				(开始统计	

图 8.87 边沿统计排序

边沿的情况还可以用带宽方式体现,方便工程人员快速判断问题进行定位。

从 EMI 方面考察,各大汽车厂商规定上升和下降斜率不得大于 16V/us。所以我们标定 一个节点的斜率是否符合规范,可以采用这个标准。

所以在信号质量方面,广州致远电子股份有限公司设定的边沿标准保证了信号质量不会 **ZLG** ©2022 Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

由于边沿问题导致通讯问题,如表 8.2 所示。

表 8.2 边沿与带宽测量标定标准

差分电平	良好	合格	很差
上升时间(20%-80%)	<0.070*位时间	(0.07~0.12)*位时间	>0.12*位时间
下降时间(20%-80%)	<0.070*位时间	(0.070~0.12)*位时间	>0.12*位时间
最小带宽	>5 倍波特率	3~5 倍波特率之间	<3 倍波特率

对于边沿问题的原因,有如表 8.3 的总结。

表 8.3 边沿问题的原因

上北沿计陆	1.确保 CANH 和 CANL 没有偏置电阻;						
工开冲顶座	2.某些具备 RS 电阻斜率控制的收发器应将电阻调整到 47K。						
下降沿过缓	 1.单节点 CANH 和 CANL 分别对信号地的容性器件(电容、ESD 器件、钳位二极管)总和电容值,单线不得大于 68pF; 2.CANH 和 CANL 之间禁止加容性器件,包括电容、双端 ESD 器件、钳位二极管。 						

8.2 高级物理层和链路层分析测试

高级物理层与链路层分析测试主要针对比较复杂的测试项目,大部分项目需要专业版 CANScope-Pro 才能支持,主要涉及到测试功能、定点记录功能和干扰功能。

8.2.1 CANScope-StressZ 模拟干扰与导线长度模拟

CANScope-StressZ 是配套 CAN 总线分析仪 CANScope 来使用的,它可以在物理层上进行 CAN 总线短路、断路以及模拟总线长度等多种测试,可以很好的评估出一个系统在信号干扰或失效的情况下是否仍能稳定可靠地工作。

从 CANScope 软件主界面的 "PORT 板"选项中进入,如图 8.88 所示。

1			# 🖻	ie 🖗	÷		82			CANScope(在线 已配置)
	开始	高级	报文	测试	共享	波形	眼图	示波器	PORT板	
☑ 启用	示波器	控制面相	扳							
▼启用	终端电阻									
数学差分	* 1									
基本	控制	stress								

图 8.88 启动 CANScope-StressZ 模拟测试板

单击菜单区"stress"模块中的"控制面板"按钮,弹出"CANStress"窗口,如图 8.89 所示。

CAN 总线分析仪

CANStress	
文件 视图 模拟干扰 关于	
模拟干扰 配置 阻抗测量	
CAN IN	CAN OUT
RH (in Ohm): 0.0	• Vdis+ • Vdis- • Vdis- RSH (in Ohm): 0.0 ▲
RHL (in Ohm): 120.0 RHL	С _{н.} СНL (in pF): 0
RL (in Ohm): 0.0	vVdis- RsL (in Ohm): 0.0 ♠
最大允许电压: 5 V	布局: Standard Layout ▼ 重置酌置
□ 线缆长度模拟 □	0.0 (in m)
<u>L'</u>	

图 8.89"CANStress"窗口

1. 干扰参数概念

可用于配置干扰状态的干扰参数如下:

- ◆ RHL: 总线上的终端电阻调整(终端匹配)(如果设置为0,则为短路测试);
- ◆ RH/ RL: 用来模拟总线与干扰电压(内部或者外部)之间的接触电阻;
- ♦ RSH/RSL: 用来模拟线缆的电阻与断线情况;
- ♦ CHL: 用来模拟长线缆的寄生或负载电容;
- ◆ 重置配置:用于恢复默认状态,即120欧终端电阻使能之外,其它干扰都禁止。
- 2. 干扰布局

如图 8.90 所示,是干扰布局图(左图)以及干扰布局组合列表(右图):

图 8.90 干扰布局图(左图)、干扰布局组合列表(右图)

CAN 总线分析仪

连接状态图如图 8.91 所示:

图 8.91 连接状态 (左图)、断开状态 (右图)

R_SH/R_SL 状态图如表 8.4 所列:

表 8.4R_SH 和 R_SL 的状态图

状态	图形
CAN 总线线缆电阻 R_H(R_L)正常运作	Rute
关闭开关 R_SH (R_SL)不起作用、开关关闭	R _{su}
CAN 总线断开 R_SH (R_SL)不起作用、开关打开	R _{SH}

3. 终端电阻使用

当总线的终端电阻未达到 60Ω 时,此时需要打开 CANStress 窗口,配置 RHL 阻值,使 总线达到 60Ω, RHL 阻值设置完成后,单击开启红色键或者进入菜单点击"模拟干扰"下 面的开启,如图 8.92 所示,即可配置成功。

CAN	Stress				
. 文件	视图	模拟	干扰	关闭	
	2		开启	F9	
		0	关闭	Esc	Υ.

图 8.92 开启干扰

配置好终端电阻后,返回 CAN 示波器,查看 CAN 总线电平信号状态,可见电平信号状态非常良好,如图 8.93 所示。

图 8.93"CAN 示波器"_R_HL(120 欧姆)测试结果

继续配置 R_HL 阻值,测试总线的最大负载值,当阻值为 1200 欧姆时, CAN 总线状态 依然正常,继续匹配,设置阻值为 1300 欧姆,如图 8.94 所示。

CANStress	
文件 视图 模拟干扰 关于	
🗋 📂 🖶 🔍 🕨 💽	
模拟干扰 配置 阻抗测量	
CAN IN	CAN OUT
RH (in Ohm): 0.0 CAN _H	Vdis- RSH (in Ohm): 0.0 ★
RHL (in Ohm): 1300.0 🚔 R _{HL}	C _{HL} CHL (in pF): 0
RL (in Ohm): 0.0 CAN	v Vdis- v Vdis- v Vdis- RSL (in Ohm): 0.0 ↔
最大允许电压: 5 V	布局: Standard Layout ▼ 重罟配罟
□ 线缆长度模拟 □	0.0)

图 8.94"CANStress"窗口_配置 R_HL 阻值为 1300 欧姆

返回 CAN 报文界面,检测数据的正确性以及查看 CAN 电平信号状态,可以看到所有的报文已经出错, CAN 电平信号也极其不规范,如图 8.95 所示。可见合理终端电阻匹配值对于信号传输有着重要的作用。

图 8.95CAN 示波器_ R_HL(1300 欧姆)测试结果

终端电阻过小会导致电平幅值降低,导致信号识别问题,如图 8.96 所示,终端电阻为 30 欧时,电压幅值只有 1.1V 的眼图画面。

CAN 总线分析仪

终端电阻过大会导致电平幅值增加,但波形下降沿变缓,即放电时间加长,最终位宽度 识别错误。如图 8.97 所示,下降沿已经很缓了,导致 ACK 延迟加大(双眼图的原因)。

注意,在长距离走线的情况下,线缆的阻抗会和终端电阻分压,导致幅值降低,所以适当增大终端电阻,可以提高幅值,保证电平幅值满足 1.3V 的最低要求。比如 10KM 的情况下,单线阻抗已达 128 欧,所以终端电阻应为 390 欧。

图 8.97 终端电阻过大

如表 8.5 所示,为测试标定结果。10~10kΩ,参考特征值为显性电平幅值电压。

表 8.5 终端电阻范围

终端电阻标值	10Ω	30Ω	60Ω	120Ω	240Ω	600Ω	1kΩ	5kΩ	10kΩ
125Kbps:	报错	1.09V	1.43V	1.94V	2.17V	2.39V	2.48V	2.61V	2.66V
250Kbps:	报错	1.16V	1.52V	2.03V	2.27V	2.50V	2.56V	2.72V	2.75V
500Kbps:	报错	1.17V	1.53V	2.09V	2.31V	2.55V	2.63V	2.77V	2.61V
1Mbps:	报错	1.19V	1.58V	2.11V	2.36V	2.58V	2.67V	2.58V	报错

4. 负载电容使用

基本操作:进入 CANStress 窗口,点击 C_{HL} 的电容图标,使能其连接,在 CHL 设置栏 中输入需要测试的电容值,此处电容值设为 1000pF,如图 8.98 所示。

CAN 总线分析仪

CANStress	
文件 视图 模拟干扰 关于	
模拟干扰 配置 阻抗测量	
CAN IN	CAN OUT
RH (in Ohm): 0.0 CAN _H	RSH (in Ohm): 0.0
RHL (in Ohm): 120.0	C _{HL} CHL (in pF): 1000
RL (in Ohm): 0.0 CAN	RSL (in Ohm): 0.0
最大允许电压: 5 V 布局: Stand	ard Layout 👻 重置配置
□ 线缆长度模拟 □	0.0 (n m)
1	

图 8.98"CANStress"窗口_配置 CHL 容值为 1000pf

ChL 容值设置完成后,启动模拟干扰。返回 CAN 报文界面,报文数据状态为成功,查看 CAN 示波器电平信号状态,可见电平信号状态非常良好,如图 8.99 所示。

图 8.99CAN 示波器_ CHL(1000pf)测试结果

继续配置 Cm 电容值,测试负载的最大电容值,不断上调电容值,当设置电容值为 4000pF 时,如图 8.100 所示。

CAN 总线分析仪

CANStress	- • 💌
文件视图模拟干扰关于	
CAN IN	CAN OUT
RH (in Ohm): 0.0 CAN _H	RSH (in Ohm): 0.0
RHL (in Ohm): 120.0	C _{HL} CHL (in pF): 4000
	R _{sL} RSL (in Ohm): 0.0
最大允许电压: 5 V 布局: Stan	dard Layout 🔻 重置配置
□ 线缆长度模拟 □	— 0.0) (in m)
<u> </u>	

图 8.100"CANStress"窗口_配置 CHL 容值为 4000pf

返回 CAN 报文界面,检测数据的正确性以及查看 CAN 示波器电平信号状态,可以看到所有的报文已经出错(图 8.101), CAN 电平信号也极其不规范(图 8.102)。

¢	AN 报文						→ 쿠 □	×
	1 16 76 78	5 🛪 🕱 🖹 🖸 🕼	「測波特率 🔁 自动	加滾屏 🛜 清除过滤 5	ໄ 清空列表 🔌			
序	5	时间	状态	传输方向	帧类型	数据长度	帧ID	•
在	此处输入 🤉	7 在此处输入文字	▼ 在此处输入	▼ 在此处输入… ▼	在此处输入… 🍸	在此处输入 🍸	在此处输入	
	4,308,657	00:29:52.166 406	定界符格式					-
	4,308,658	00:29:52.166 421	定界符格式	接收 (本地)				
	4,308,659	00:29:52.166 436	定界符格式	接收 (本地)				
	4,308,660	00:29:52.166 451	定界符格式	接收 (本地)				
	4,308,661	00:29:52.166 466	定界符格式	接收 (本地)				
	4,308,662	00:29:52.166 481	定界符格式	接收 (本地)				
	4,308,663	00:29:52.166 496	定界符格式	接收 (本地)				
	4,308,664	00:29:52.166 511	定界符格式	接收 (本地)				
	4,308,665	00:29:52.166 526	定界符格式	接收 (本地)				
	4,308,666	00:29:52.166 541	定界符格式	接收 (本地)				
	4,308,667	00:29:52.166 556	定界符格式	接收 (本地)				
	4,308,668	00:29:52.166 571	定界符格式	接收 (本地)				
	4,308,669	00:29:52.166 586	定界符格式	接收 (本地)				
	4,308,670	00:29:52.166 601	定界符格式	接收 (本地)				
	4,308,671	00:29:52.166 616	定界符格式	接收 (本地)				
	4,308,672	00:29:52.166 631	未知错误(0x	接收 (本地)				
	4,308,673	00:29:52.166 646	定界符格式	接收 (本地)				
	4,308,674	00:29:52.166 661	定界符格式	接收 (本地)				
	4,308,675	00:29:52.166 676	定界符格式	接收 (本地)				
	4,308,676	00:29:52.166 691	定界符格式	接收 (本地)				
	4,308,677	00:29:52.166 706	定界符格式	接收 (本地)				Ŧ
•			III				÷.	

图 8.101CAN 报文_ CHL(4000pf)测试结果

CAN 总线分析仪

图 8.102CAN 示波器_ CHL(4000pf)测试结果

可见导线的容抗会对总线信号传输造成非常严重的影响

如图 8.103 所示的三个图片可以看出,随着电容增大,波形下降沿时间逐渐增大,位宽 度逐渐缩小。

图 8.103 负载电容变化的眼图

如表 8.6 所列,为某个被测节点的测试标定结果。为 0pF~1nF,参考特征值为位下降沿时间。

CAN 总线分析仪

电容标值	不接	68pf	98pf	120pf	150pf	820pf	1nf	4.7nf	22nf
实测值	不接	66pf	96.5pf	119.7pf	155.2pf	783pf	0.875nf	5.01nf	19.14nf
125Kbps:	78.1ns	93.8ns	109ns	125ns	156ns	438ns	484ns	3us	报错
250Kbps:	70.3ns	109ns	117ns	133ns	148ns	422ns	484ns	报错	报错
500Kbps:	58.6ns	74.2ns	82ns	97.6ns	105ns	359ns	391ns	报错	报错
800Kbps:	48.8ns	70.2ns	85.4ns	95.2ns	107ns	364ns	417ns	报错	报错
1Mbps:	48.8ns	70.3ns	84ns	95.7ns	105ns	363ns	418ns	报错	报错

表 8.6 负载电容适用范围

结合各大车厂与工控企业的组网标准,需要控制单个节点的容抗特征的标准,如表 8.7 所示。

表 8.7 单个节点容抗值

待接入的网络中 CAN 节点数量	单个 CAN 节点电容最大值(对地电容或两线间电容)
<5	100pF
5~10	68pF
10~20	30pF
20~30	22pF
30~70	11pF
70~110	至多 70 个节点有装配电容,其它节点不得装配电容

5. 内部或外部干扰源

CANScope-StressZ 外部可输入内部电源干扰或外部电源干扰,软件通过"配置"中的干扰源来切换,如图 8.104 所示。

CANStress
文件 视图 模拟干扰 关于
模拟干扰 配置 阻抗测量
示波器监听端 CAN IN ▼ 使能收发器
CAN 总线类
容\ CAN电阻: 500 -
干扰源: 内部 ▼ 外部为Vds+与Vds- 内部 外部
1

图 8.104 选择干扰源

然后,即可使能 RH 和 RL,通过点击单刀双掷开关,来选择干扰源。并且可以调整 RH 和 RL 的电阻值,来设定干扰的限流电阻,如图 8.105 所示。

CANStress	
文件视图 模拟干扰 关于	
模拟干扰 配置 阻抗测量	
CAN IN	CAN OUT
	RSH (in Ohm): 0.0
RHL (in Ohm): 120.0 🚔 R _{HL}	CHL (in pF): 4000
	RSL (in Ohm): 0.0
最大允许电压: 5 V 布局: Standard Layout	▼ 重置配置
□ 线缆长度模拟 0.00	<u>↓</u> (in m)

图 8.105 选择干扰源的输入

如果是外部干扰: Vdis+为外部 Vdis+接线端子接入的外部干扰电源正, Vdis-为外部 Vdis-接线端子接入的外部干扰电源负。注意,这里接入的外部干扰源电压最大 24V,当需 要接入外部干扰源时,需先将软件中的干扰源设置为外部,否者会导致 Stress 扩展板烧坏。

如果是内部干扰: Vdis+为内部的 VCC (5V), Vdis-为内部的 GND (0V)。

6. 导线长度模拟

可以使用 CANStress 模拟导线长度,只需勾选线缆长度模拟,然后输入要模拟的导线长度,即可完成导线长度模拟功能,如图 8.106 所示,为模拟 6520 米的导线长度。

CANStress	- • •
文件 视图 模拟干扰 关于	
模拟干扰 配置 阻抗测量	
CAN IN	CAN OUT
	RSH (in Ohm): 82.5
RHL (in Ohm): 120.0 + R _{HL}	CHL (in pF): 15750
	RSL (in Ohm): 82.5
最大允许电压: 5 V 布局: Standard Layout	▼ 重咒酉咒
☑ 线缆长度模拟 6520.0	ᆗ (in m) 电容达到最大值

图 8.106 模拟导线长度

8.2.2 CAN 传输阻抗测量

测定网络的终端电阻特征,可以很方便地获知目前总线的终端电阻配置正确与否。对于 **ZLG** ©2022 Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

一个节点来说,测量标定节点的阻抗特征,对于系统集成方来说可以很方便地获知购买的设备参数信息,而不需要看电路或者询问厂家。

由于测量的是物理参数,所以**节点不需要上电**。接好线缆,打开 CANStress。然后在**保** 证 **R_{HL} 断开,C_{HL} 断开的情况下**,开启模拟干扰。这样就不会将 CANScope 的终端电阻引入, 导致测试结果不正确,如图 8.107 所示。

CANStress	
文件 视图 模拟干扰 关于	
模拟干扰 配置 阻抗测量	
连接方式	
RpllCp ▼ 升班	
CANH 取消 取消	
校准 请在专业人士指导下操作	

图 8.107 阻抗容抗测量前准备

切换到阻抗测量界面,在未接被测设备时,进行校准,然后再接好被测设备开始测试,即可得到测量结果,如图 8.108 所示。

图 8.108 阻抗容抗测量

CAN 设备接口电路设计不规范,或者跨行业使用电路,容易导致现场一系列问题,所 以从根源上面对节点进行标定可以很有效地防止现场问题的发生。比如某个 CAN 节点焊了 120 欧终端电阻,但并没有在说明书中说明,如果使用者总线上面又加了 2 个,就会导致幅 值降低。

所以使用 CANScope 对每个需要挂上总线的节点进行标定,可以很好地预防这些问题。 控制好每个节点的阻抗是保证网络稳定运行的前提,如表 8.8 所列。

CAN 总线分析仪

表 8.8 阻抗匹配规则

阳持汗水	如果阻抗小于 200Ω,就需要进行调整了,因为其已经可以影响总线幅值,建议不
阻机过小	得小于 500 Ω。

8.2.3 波形对称性测试

波形对称性是指 CANH 和 CANL 波形的对称性,就是指 CANH 和 CANL 在总线上的 波形位宽、幅值是否对称,如果不对称就会导致差模干扰,影响正常的数据逻辑识别。点击 "测试"中的"对称性测试",然后点击"自动设置"调整电压偏移范围,点击"开始测试", 稍后可得到测试结果,如图 8.109 所示。

انگا بین	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
▶ // 事件标记 错误: 设置	
CANHER	対称性測试 🕈 🛛 🛛
	对称性测试:分析共模信号(CANH+CANL)/2,测试CANH与CANL的对称程度。 电压范围
序号 在世外输入	电压范围 0.25 V/div ▼ 电压偏移(V) -2.459 1.自动设置
	提示:电压范围和偏移,用作共模信号的重程。
	电压中心(V) 2.439 误差电压(V) 0.5 2.开始测试
	测试结果 通过 3.生成报告
	提示:当共模信号在(电压中心±误差电压)的范围内,表示测试通过。
1	

图 8.109 对称性测试

点击"生成报告",可生成如图 8.110 所示的报告。

图 8.110 对称性测试报告

8.2.4 错误干扰测试(仅专业版)

CAN 总线分析仪

CANScope-Pro 专业版 CAN 分析仪具备错误与干扰的功能,可以对某个节点或者某个 网络进行错误干扰,以验证这个节点或者系统的鲁棒性(可恢复性)。

由于 CANScope 设备本身不是大功率干扰仪,所以错误与干扰功能产生的是"数字式"的干扰,即当已经配置好的干扰被激发后,特定的干扰脉冲破坏 CAN 报文的位逻辑信号,导致 CAN 控制器识别错误。由于能量均为正常的 CAN 电压范围(5V 以内),所以不会导致设备损坏。

如果用户需要进行模拟信号干扰,比如模拟电机耦合或者雷击浪涌,则需要使用大功率的模拟信号发生器,接入 CANScope-StressZ 扩展板的外部干扰输入端子,从而进行模拟干扰,当然输入的外部干扰信号电压不能超过 24V,否者会导致 CANScope-StressZ 扩展板烧坏。

从 CANScope 软件主界面的"测试"选项中打开"错误与干扰"功能,如图 8.111 所示。

$\widehat{\mathbf{A}}$) 🖻 📮 🖬 🚽	í 🗄 🚍 🔟	-							
\sim	开始高级	报文	测试 🗦	转了 波形	眼圈	示波器	PORT板			
事件标		CANH 牛眼圈 对称性测		〕 【 位竞容忍度测试	CAN测试	HX.				
H										
	副天与干扰									
	🔲 自定义发送波	特率 1 Mbps				自用发送错	误帧帧ID填充	错误[4:0]	T	
序	🗌 启用发送干扰					启用接收干	扰			帧
在	时间范围:干	扰信号的持续	射间与位宽	的百分比		时间范围:	干扰信号的持续时	1间与位宽的	百分比	7 在
W	偏移时间 0		持续时间	10		偏移时间	D #	持续时间 1	.00	B8
1						أماماد	مامامامام	مامامامام		B8
W	0% 20	1%: 411%;	60% 80	% 100%		0% 2	20% <u>40%</u> 6	50% 80%	100%	B8
201										88
w	指定需要干扰	哪些位(对应(立为1 <mark>)</mark> ,在这	些位的"时间		满足匹配条(件后,在指定"干	扰位置"的"时	间范围"内干扰	01
w	范围"内干扰					帧类型匹酉	2 标准数据帧	v]	B8
w	□帧ID干扰	00000000		设置		🗌 巾贞ID 匹酉	00000000 5		设置]	B8
w	DLC干扰	0		设置		掩码	1FFFFFF		1	B8
W			00.00.00.00				0 00 00 00 00 5	0 00 00 00	设置]	10
201			00 00 00 00			埼石	FF FF FF FF FF	F FF FF FF		01
Ŵ	☑随机位置∃	F扰频率 一}		- 10		·····································	, LTT (ATT)	1431787 - 146 2	- 東大松久小公	02
w						匹留成功		ि/丁异, 拍⊼ □ /□¬-/□>./□	E要干扰多少12	13
-						十扤位数	Į D	11.2.2.112.112	12(12辑1)有效	6
						干扰时间	无限	-		
							前田		III:当	
							102713		47.71	
					100		10005	20003	2000	

图 8.111 测试_错误与干扰

上图"错误与干扰"功能说明如下:

- ◆ 自定义发送波特率:以错误的波特率发送数据,验证被测节点或者系统是否能自恢复(注意启用后需要在报文界面点击发送报文);
- ◆ 启用发送错误帧: 在发送或者接收 CAN 帧的特定位置产生填充错误或者位错误, 从而导致错误帧(注意启用后需要在报文界面点击发送报文);
- ◆ 启用发送干扰:对由 CANScope 发送的报文进行干扰,导致被测的接收节点由于接 收错误计数器达到 255,而进入总线关闭(注意启用后需要在报文界面点击发送报 文);
- ◆ 启用接收干扰:对 CANScope 接收的报文进行干扰,导致被测的发送节点由于发送 错误计数器达到 255,而进入总线关闭。
- 1. 自定义发送错误波特率

打开"错误与干扰"窗口,勾选"自定义发送波特率"前面的框,右边的下拉按钮由灰 变亮,单击下拉按钮,选择对应的波特率,或者在输入栏中手动输入,如图 8.112 所示。设 置完毕后,点击错误与干扰窗口右下方的"应用",以启用设置。

错误与干扰	
☑ 自定义发送波特率	1 Mbps
□ 启用发送干扰	1 Mbps 800 Kbps 500 Kbps
时间范围:干扰信号	250 Kbps 125 Kbps
偏移时间 60	100 Kbps
0% 20%	20 Kbps 10 Kbps 5 Kbps

图 8.112"自定义发送波特率"窗口

返回 CAN 报文界面,此时如果发送报文,则以错误与干扰中设置的波特率为准,而接 收还是以实际波特率为准,点击发送后,报文框中会出现许多错误,切换到波形界面,可以 发现假设总线上的 100Kbps 的波特率,都被 1Mbps 所干扰,如图 8.113 所示。

					_		
-	CAN报文 ×	🔇 🖓 网络共享 🛛 🔤	CAN波形 🚺 CAN	眼图 🖉 📖 CAN	示波器	T CAN报文 🔾 网络共享	CAN波形 × III CAN眼图 III CAN示波器
	N A 14 14	*	이 바람은 🔊 이 바였다) (±147) =		
Ľ		/ * = = =			A /ER734		10us 20us 30us
3	序号	时间	状态	方向	帧类型	1.6211/ -	
1	在此处输入… 🍸	在此处输入文字	▼ 在此处输入… ▼	在此处输入	▼ 在此处		
1	6,409	00:16:07.970 344	帧ID填充错…	发送	_	CAN-H 796.9mV-	
I	0 6,410	00:16:07.973 670	帧ID填充错…	发送		62.5m)/ =	
1	0,411	00:16:07.977 040	帧ID填充错	发送		-312.5mV -	
	0 6,412	00:16:07.980 485	帧ID填充错…	发送			
1	0,413	00:16:07.984 070	帧ID填充错…	发送			
1	0,414	00:16:07.987 512	帧ID填充错	发送		-1 469V -	المالي المالية المستخلصا المستحصا المسالم المسالم المسالم المسالم المسالم المستحص المستحص المستحص المستحص المستح
	0 6,415	00:16:07.991 157	帧ID填充错…	发送		2.969V -	2.703V
1	0,416	00:16:07.997 617	帧ID埴充错	发送		CAN ## A sony	
	0,417	00:16:07.999 288	帧ID填充错…	发送		CAN-22 /J 1.088V	开始时间=7.20s 2.042v 结束时间=12.3us
1	0,418	00:16:08.001 044	帧ID填充错	发送		406.3mV -	661 5mV
1	0 6,419	00:16:08.002 470	帧ID填充错…	发送			
	0,420	00:16:08.004 300	帧ID填充错	发送		CAN-逻辑	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
	0,421	00:16:08.005 939	帧ID填充错	发送			
			1 man 1 m 1 m	112224			

图 8.113 自定义发送波特率错误

自定义发送波特率产生的错误率与用户发送速度有关,假设总线上出现的报文流量比较高,而发送错误波特率的速度比较慢,就不会导致被测节点或者网络总线关闭,用户可以在发送时将"重复次数"加大到255,以加快发送。

2. 启用发送错误帧

打开"错误与干扰"窗口,勾选"启用发送错误帧"前面的框,右边的下拉按钮由灰变 亮,单击下拉按钮,选择对应的帧错误类型,如图 8.114 所示。设置完毕后,点击错误与干 扰窗口右下方的"应用",以启用设置。

🔽 启用发送错误帧	帧结束格式错误 ▼	
🗌 启用接收干扰	帧ID填充错误[4:0] SRR位填充错误 IDE位填充错误	
时间范围:干扰信	帧ID填充错误[20:18] RTR位填充错误	
偏移时间 0	R1填充错误 R0填充错误	
	数据场填充错误	
0% 20%	CRC序列填充错误 CRC序列填充错误 CRC定界符格式错误 应答定界符格式错误	%
···· [7]	帧结束格式错误	+

图 8.114"启用发送错误帧"窗口

返回 CAN 报文界面,此时如果发送报文,在 CAN 报文视图区内查看数据的实时发送

CAN 总线分析仪

状态,如图 8.115 所示。可以看到捕捉到的数据错误状态与前面设置的帧错误类型相匹配。

· · · ·	CAN报文	×	🕗 网络共享) CA	N波形 🚺 CAN		📖 CAN	N 示波器	
	1 76 5	*	* 🕷 💷		自动	量程 🔁 自动滚屏	17日間	除过滤	🗙 清	余列
序号	;		时间			状态		方向		
在此	/处输入	7	在此处输入3	之字	Y	在此处输入文字	Y	在此处	输入	Y
1	119,566	_	00:01:26.884	377		帧结束格式错误		发送		
100	119,567		00:01:26.884	691		帧结束格式错误		发送		
-	119,568		00:01:26.885	006		帧结束格式错误		发送		
3	119,569		00:01:26.885	320		帧结束格式错误		发送		
3	119,570		00:01:26.885	635		帧结束格式错误		发送		
3	119,571		00:01:26.885	950		帧结束格式错误		发送		
W	119,572		00:01:26.886	264		帧结束格式错误		发送		
30	119,573		00:01:26.886	579		帧结束格式错误		发送		
-	119,574		00:01:26.886	893		帧结束格式错误		发送		
-	119,575		00:01:26.887	208		帧结束格式错误		发送		
5 U U	119,576		00:01:26.887	522		帧结束格式错误		发送		

图 8.115 启用发送帧错误

3. 启用发送干扰

打开"错误与干扰"窗口,勾选"启用发送干扰"前面的框,开启所有设置选项,如图 8.116 所示。

🔽 启用发送干	扰							
时间范围:	时间范围:干扰信号的持续时间与位宽的百分比							
偏移时间	60	持续时间	20					
0%	20% 40%	60% 8	0% 10 <mark>0%</mark>					
指定需要干 范围"内干扰	指定需要干扰哪些位(对应位为1),在这些位的"时间 范围"内干扰							
回帧口干扰	ft 0000000)	设置					
□DLC干扰	0		设置					
🔲 数据干扰	ft 00 00 00	00 00 00 00 00	设置					
🔽 随机位置	置于扰频率 -		0					

图 8.116"发送数字干扰"窗口

上图"启用发送干扰"功能说明如下:

◆ 时间范围:定义了干扰的位置,即干扰时,将这个位的某个区域变成相反的电平。 这个某个区域,使用"偏移时间"和"持续时间"来约束,比如干扰的节点波特率 采样点为70%,则干扰位置必须覆盖采样点位置,否则干扰无效,如图8.117所示。

时间范围:	干扰信	干扰信号的持续时间与位宽的百分比						
偏移时间	60	0 持续时间 20						
				h	,			
0%	20%	40%	60%	80	%	10)%	

图 8.117 干扰位置

◆ 帧 ID 干扰:对发送帧 ID 进行匹配干扰;

勾选"帧 ID 干扰",去掉"随机干扰强度"(软件默认为勾选),若保留"随机干扰强度",则在指定干扰的同时,还有系统随机生成的、不定位置的干扰信号,如图 8.118 所示;

☑ 启用发送干扰									
时间范围:干	时间范围: 干扰信号的持续时间与位宽的百分比								
偏移时间 60	•	持续时间	20						
0% 20	1% 40%	60% 1	80%	100%					
指定需要干劫 范围"内干扰	指定需要干扰哪些位(对应位为1),在这些位的"时间 范围"内干扰								
☑ 帧叩干扰	00000000		6	设置					
🔳 DLC干扰	0		6	设置					
🔳 数据干扰	00 00 00 0	0 00 00 00 0	0	设置					
📃 随机位置=	F扰频率 -			0					

图 8.118 勾选"帧 ID 干扰"

设置干扰位置掩码,即指定 ID 中哪些位需要被干扰。位设置有两种方式,如下:

1. 在输入框要求十六进制输入,比如 00000005,表示第 0 位和第 2 位的干扰区域会被干扰 成相反的位。

2. 或者单击输入框右侧的【设置】按钮,打开"位设置"窗口,如图 8.119 所示。在指定的位置内,单击对应的方框, x 变为1 (x 表示不干扰; 1 表示干扰)。例如: 需要指定帧 ID 的第 0、2 位为干扰目标,则设置第 0、2 位掩码,如图 8.120 红色框所示,单击【确定】按钮即可。

备注:标准帧 ID 有 11 位,扩展帧 ID 有 29 位。

位设置	x
31 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 XXXXXXXX XXXXXXXX 32
	32 X X X X X X X X X X X X X X X X
	计算器 願定 取消

图 8.119"位设置"窗口

位设置		x
31	XXXXXXXX XXXXX	0 X 1
		32 X X
	计算器 項	以消

图 8.120"位设置"窗口-设置位置掩码

回到"错误与干扰"窗口,可以在输入栏中查看到数字 00000005,如图 8.121 红色框所示。设置完毕后,点击错误与干扰窗口右下方的"应用,以启用设置。

☑帧Ⅳ干扰	0000005	设置				
IDLC干扰	0	设置				
🔲 数据干扰	00 00 00 00 00 00 00 00 00	设置				
□随机位置干扰频率						

图 8.121"帧 ID 干扰"_单击确定

CAN 总线分析仪

返回 CAN 报文界面,如果点击发送,在 CAN 报文视图区内单击选中某一条报文,如 图 8.122。

т с <i>4</i>	N报文	×	(2) 网络	共享		CA	N波用	B (O	CAN	NIE		CAN	N示波器		
B .	16 76 5	*	* 📈		.	司动	量程	2 E	司动滚用	∓ 🯹	清	除过滤	🗙 清晰	余列	表
序号			时间				状态					方向			帧类
在此如	业输入…	7	在此处辅	ìλ文	字	7	在此	处输	入文字		Y	在此处	输入	Y	在此
M	29,897		00:01:11.	139	159		CRC	主界符	F格式错	韺		发送			
m	29,898		00:01:11.	139	414		CRC	主界符	F格式错	誤		发送			
W	29,899		00:01:11.	139	668		CRC	主界符	F格式错	誤		发送			
N	29,900		00:01:11.	139	706		帧IDt	直充错	誤[20	:18]		接收			
W	29,901		00:01:11.	139	956		定界符	夺格式	错误			发送			
W	29,902		00:01:11.	140	211		CRC	全界符	F格式错	誤		发送			
M	29,903		00:01:11.	140	465		CRC	全界符	F格式错	誤		发送			
W	29,904		00:01:11.	140	504		帧IDt	直充错	誤[20	:18]		接收			
M	29,905		00:01:11.	140	754		定界符	夺格式	错误			发送			
M.	29,906		00:01:11.	141	800		CRC	主界符	F格式错	誤		发送			
M	29,907		00:01:11.	141	263		CRC	2界符	F格式错	誤		发送			

图 8.122 帧 ID 干扰某一帧报文

切换到 CAN 波形界面,可以查看报文对应的波形和解析结果,如图 8.123 所示,可以 看到帧 ID 在第 0 位和第 2 位的 60% 开始有持续时间为 20%的干扰信号,导致帧错误。

图 8.123 查看帧 ID 干扰结果

♦ DLC 干扰:对指定的数据长度进行干扰;

DLC 干扰和上一小节的帧 ID 干扰的操作步骤基本相同,唯一不同的是 DLC 的位长度 是 4 位,如图 8.124 所示,假设设置掩码为 6,就是干扰第 1 位和第 2 位,设置完毕后,点击错误与干扰窗口右下方的"应用",以启用设置。

位设置	x
31 X X X X X X X X X X X X X X X X X X X	0 x x x x x x x x x x x x x x x x
	计算器 确定 取消

图 8.124DLC 干扰_位设置

返回 CAN 报文界面,点击发送,单击选中某一条报文,切换到 CAN 波形界面,可以 查看报文对应的波形和解析结果,如图 8.125 所示,可以看到 DLC 帧的第 1、2 位有对应的

CAN 总线分析仪

干扰。

图 8.125 DLC 干扰结果

◆ 数据干扰:对指定的数据域进行干扰;

数据干扰和上两小节的帧 ID 干扰、DLC 干扰的操作步骤基本相同,唯一不同的是数据的位长度是 64 位 (8 个字节),设置第 2、4、7 位为掩码,干扰第 1 个字节的 2、4、7 位,如图 8.126 所示。

位设置	x
31 X X X X X X X X X X X X X X X X X X X	0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	计算器 取消

图 8.126 数据干扰_位设置

返回到"错误与干扰"窗口,可以看到数据干扰输入栏中数据为 94 00 00 00 00 00 00 00 00, 如图 8.127 所示。设置完毕后,点击错误与干扰窗口右下方的"应用",以启用设置。

■帧ID干扰	0000005	设置				
■DLC干扰	0	设置				
☑ 数据干扰	94 00 00 00 00 00 00 00 00	设置				
□随机位置干扰频率						

图 8.127"错误与干扰"_数据干扰

返回 CAN 报文界面,点击发送,单击选中某一条报文。再切换到 CAN 波形界面,可 以查看报文对应的波形和解析结果,如图 8.128 所示,可以看到数据帧的第 2、4、7 位有对 应的干扰。

CAN 总线分析仪

CAN 波形	·	×□4
	M2 - M1 = 10us	
	20us 22us 24us 26us 28us 30us	
1.841V - - CAN-H 840.8mV - 		
CAN-差分 CAN-逻辑值		
— CAN-分析	DATA:67 H DATA:47 H	
		•

图 8.128 查看数据干扰结果

◆ 随机干扰强度:根据设置的随机干扰频率,对 CANScope 发送帧随机干扰,干扰 强度可控。用户可以拖动干扰频率的强度条,来确定干扰强度,如图 8.129 所示。

■帧ID干扰	0000005	设置
I DLC干扰	0	设置
📃 数据干扰	94 00 00 00 00 00 00 00 00	设置
📝 随机位置于	扰频率	0

图 8.129 随机干扰强度

4. 启用接收干扰

"启用接收干扰"与上一节的"启用发送干扰"功能一样,不同点是前者需要在发送报 文上施加干扰,而后者是在接收到的报文上施加干扰,即在接收到外部发送过来的报文之后, 进行匹配,匹配完成后,对符合匹配条件的报文进行干扰。

打开的"错误与干扰"窗口中,勾选"启用接收干扰",开启匹配设置选项,如图 8.130 所示。

📝 启用接收干扰	
时间范围: 干扰	忧信号的持续时间与位宽的百分比
偏移时间 0	持续时间 100
0% 209	6 40% 60% 80% 10 <mark>0</mark> %
满足匹配条件质	S,在指定"干扰位置"的"时间范围"内干扰
帧类型匹配	标准数据帧 ▼
m dīd mān 🗐	00000000 设置
掩码	1FFFFFFF
🗖 数据匹配	00 00 00 00 00 00 00 00 设置…
掩码	FF FF FF FF FF FF FF FF
匹配成功后。	,从下一位开始计算,指定要干扰多少位
干扰位数	6 仅对隐性位(逻辑1)有效
干扰时间	无限

图 8.130"错误与干扰"_启用接收干扰

时间范围: 定义了干扰的位置, 即干扰时, 将这个位的干扰区域变成显性电平, 使用"偏移时间"和"持续时间"来约束, 比如干扰的节点波特率采样点为 70%, 则干扰位置必须覆盖采样点位置, 否则干扰无效, 如图 8.131 所示。

图 8.131 干扰位置

不过即便如此, CAN 有着很强的自我调整能力,所以为了保证每帧必然被干扰到,推 荐将偏移时间设置为 0,持续时间设置 100,即整位干扰,保证干扰强度,如图 8.132 所示。

图 8.132 整位干扰提高强度

匹配条件包括帧类型、帧 ID、数据 3 种,设置方式如下:

- ◆ 帧类型:单击下拉按钮来打开列表,列表内容有标准数据帧、标准远程帧、扩展数据帧、扩展远程帧4个选项,单击对应的类型即可。
- ◆ 帧 ID 匹配:

有两个输入栏,第一个输入栏为需匹配的帧 ID 值,第二个输入栏为需匹配的掩码值。 若帧类型为扩展帧,则帧 ID 位数默认为 29 位,若为标准帧,则帧 ID 位数默认为 11 位。 勾选"帧 ID 匹配"前面的框,在两个输入栏中,分别手动输入十六进制的帧 ID 值和掩码 值,或者单击掩码输入框右侧的【设置】按钮,打开"位设置"窗口,如图 8.133 所示。在 打开的窗口内,单击小方块,单击一次,x为1,在数字1上面再单击一次,1变为0,在数 字0上面再单击一次,0重新变回 x。(x表示不匹配;1表示匹配值为1;0表示匹配值为0)。 例如:需要匹配帧 ID 的第0、1、2、3 位为,匹配值为2,则分别设置第0、1、2、3 位掩 码为0、1、0、0,如图 8.133 红色框所示,单击【确定】按钮即可。

位设置	x
31 Marina Marina Marina 63	0 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

图 8.133 帧 ID 匹配_位设置

返回"错误与干扰"界面,可以看到帧 ID 值为 00000002, 掩码为 0000000F, 如图 8.134 所示,设置完毕后,点击错误与干扰窗口右下方的"应用",以启用设置。

图 8.134"错误与干扰"_帧 ID 匹配

回到 CAN 报文界面,开始接收数据,找到错误帧(ID 匹配的基本都是 DLC 填充错误,因为 ID 匹配后进行干扰,首当其冲的就是 DLC),单击选中某一条。如图 8.135 所示。

T C	🌇 CAN报文 🗙 🐼 网络共享 📓 CAN波形 🗰 CAN眼图 🗬 CAN示波器							
	16 76 78	🎋 📈 🖹 🔳	自动量程 😂 自动滚	屏 🛜 清除过滤 🛃 清降	徐列表 🥠			
序号	-	时间	状态	方向	帧类型			
在此	处输入 🤉	7 在此处输入文字	▼ 在此处输入文字	≤ ▼ 在此处输入…	▼ 在此处输入			
n.	70,018	01:02:11.226 013	 成功		 扩展数据帧			
TO I	70,019	01:02:11.226 300	成功	接收	扩展数据帧			
	70,020	01:02:11.226 432	DLC填充错误	接收				
100	70,021	01:02:11.226 564	DLC填充错误	接收				
100	70,022	01:02:11.226 848	成功	接收	扩展数据帧			
100	70,023	01:02:11.227 132	成功	接收	扩展数据帧			
-00	70,024	01:02:11.227 416	成功	接收	扩展数据帧			
100	70,025	01:02:11.227 706	成功	接收	扩展数据帧			

图 8.135 ID 匹配接收干扰

再切换到 CAN 波形界面,可以查看报文对应的波形和解析结果。如图 8.136 所示,可以看到数据帧 ID 为 0x0013352,由于最后是"2"所以被干扰了。而且持续干扰了 20 个位时间。

图 8.136CAN 波形_帧 ID 匹配

CAN 总线分析仪

有两个输入栏,第一个输入栏为需匹配的帧数据值,第二个输入栏为需匹配的掩码值。 勾选"数据匹配"前面的框,在两个输入栏中,分别手动输入十六进制的数据值和掩码值, 或者单击掩码输入框右侧的【设置】按钮,打开"位设置"窗口,如图 8.137 所示。在打开 的窗口内,单击小方块,单击一次, x 为 1,在数字 1 上面再单击一次, 1 变为 0,在数字 0 上面再单击一次,0 重新变回 x。(x 表示不匹配; 1 表示匹配值为 1; 0 表示匹配值为 0)。 例如:需要匹配数据的第 1 个字节为 0x94,则分别设置第 0~7 位掩码为 0、0、1、0、1、0、 0、1,如图 8.137 所示,单击【确定】按钮即可。

位设置		×
31 X X X X X X X 63	XXXXXXXX	XXXXXXX 10010100 32
xxxxxxx	xxxxxxx	XXXXXXX XXXXXXXXX
		计算器 确定 取消

图 8.137 接收干扰_数据匹配

图 8.138 数据匹配干扰_位位置

以上3中匹配类型,可以任意组合。

干扰位数:表示开始干扰后,持续干扰的位数,这个是干扰强度的设定,默认值是 20, 表示干扰产生后,持续 20 个位。最大可以设置为 255,其强度足以让一个发送节点进入总 线关闭,如图 8.139 所示。

干扰时间: 表示持续干扰的时间, 其单位是 ms。该设置可手动输入, 也可在软件上已 给的几个时间选择。

匹配成功后,	,从下一位开始	r计算,指定要干扰多少位
干扰位数	6	仅对隐性位(逻辑1)有效
干扰时间	1000	•

图 8.139 干扰位数

8.2.5 事件标记存储波形(仅专业版)

在长期记录时,或者在排查偶发故障时,13000 帧波形记录就显得有些少了,而有的用 户一般只关心错误报文的波形,而不需要正常的波形,所以 CANScope-Pro 专业版定义了"事 件标记"功能,即对报文或者错误进行匹配,然后再存储波形,如图 8.140 所示

事件标记			X	
🔲 使用帧ID	数值(HEX) 掩码(HEX)	00000000	设置	
🗌 使用帧数据	数值(HEX) 掩码(HEX)	00 00 00 00 00 00 00 00 00 00 00 00 00	设置	
🔲 使用眼图模版		🔲 使用帧错误标记		
事件标记用途:优先存储满足条件的波形,防止被覆盖。				
		确定	取消	

图 8.140 事件标记功能

- ◆ 使用帧 ID 和使用帧数据的设置匹配方法,在 8.2.44 有详细叙述;
- ◆ 使用眼图模板:即存储与眼图模板碰撞的报文波形;
- ◆ 使用帧错误标记:即存储出错的报文波形。

一旦匹配以上某个设置,记录对应的波形不会被覆盖,但一旦标记的波形被存满 13000 帧,则不会继续存储。

8.2.6 软件眼图追踪错误根源(仅专业版)

由于硬件眼图的查看是实时的, 但有时在现场无法当场分析数据,此时可以先把波形记录下来,保存到 PC 上面,回到驻地再使用软件眼图的方法,重构现场情况,来追踪故障节点,也就是说软件眼图是离线分析的重要方法, 软件眼图是 CANScope-Pro 专业版特有的功能。

打开 CANScope 软件,进入"测试"菜单,单击【软件眼图】按钮,可打开"软件眼 图"窗口,如图 8.141 所示。

图 8.141 软件眼图界面

CAN 总线分析仪

表 8.9 软件眼图界面说明

窗口	功能	说明
选项卡	参数配置、眼图预览	不同窗口切换
视图区	显示参数配置结果、统计眼图碰撞结果	眼图碰撞
操作步骤区	三大操作步骤,从添加配置、生成眼图到查看眼图	三大操作步骤
参数配置区	修改、删除、清空、导入、导出配置	基本配置

1. 添加配置

如图 8.142, 单击【第一步: 添加配置】, 打开"添加眼图设置"窗口, 如图 8.143 所示。

ŧ	吹伴眼图							x
	参数配置 眼图顶览							
	服图	统计约	告果 二	讨渡条件	桓板参	法教		
			There are no it	ems to show.		~~		修改配置
								删除配置
								 吉空配置
								导入配置
								导出配置
	第一步:	添加配置>	第二步:生成眼图	>	第三步:查看眼	图生成报告		

图 8.142 单击【第一步:添加配置】按钮

眼图设置					
模板设置					
眼图名称:	EyeInfo				
模板选择:				清除	
眼图通道:	CAN-DIF ▼ 范围: 〔	0.5V/div 🔻	偏移(V):	0	自动调节
选择眼图通道	,点击"自动调节",可使的	主成的眼图位	于窗口中心附词	<u></u> бο	
帧过滤条件					
帧序号:	0	至	0		🔲 启用
帧类型:	<任意> ▼	数据长度:	<任意>	•	
事件标记:	<任意> ▼				
帧ID范围:					设置
帧数据 <mark>(HEX)</mark> :	00 00 00 00 00 00 00 00	掩码(HEX)	00 00 00 00 00	00 00 00	设置
	• 保留	© ;	忍略		
波形过滤					
- HERACK	域对应波形				

图 8.143 打开"添加眼图设置"窗口

 $@2022 \; \mbox{Guangzhou} \; \mbox{ZHIYUAN} \; \mbox{Electronics Co., Ltd.}$
CAN 总线分析仪

眼图名称:对眼图命名,当生成多个眼图时,不同的名称可以方便识别;

模板选择:导入模板,做软件眼图中需要对自定义模板进行导入;

眼图通道:对哪一个信号量做眼图,默认是 CAN 差分通道;

范围: 生成软件眼图后的视图垂直量程;

偏移:为了使软件眼图生成后方便观看,对眼图位置进行的调整,通常需要先点击其右边的自动调节。

◆ 过滤条件设置

帧过滤条件包括帧序号、帧类型、数据长度、事件标记、帧 ID 范围、帧数据。通过对 以上六个匹配选项的任意组合,可筛选出任意需要生成软件眼图的帧波形。

帧序号:

帧序号可以在 0 至 13000 帧内设置, 当不启用时, 默认是所有帧序号, 如图 8.144 所示。

图 8.144 软件眼图_帧序号

帧类型:

帧类型包括任意、标准数据帧、标准远程帧、扩展数据帧、扩展远程帧,默认是<任意>项,如图 8.145 所示。

<任意>	•
<任意> 标准数据帧	
标准远程帧 扩展数据帧	
扩展远程帧	

图 8.145 软件眼图_帧类型

数据长度:

数据长度包括任意、0、1、.....8,默认是<任意>项,如图 8.146 所示。比如选择 7,则只会筛选出 7 个数据长度的波形。

<任意> 🔹
<任意>
0
1
2
3
4
5
6
7
8

图 8.146 软件眼图_数据长度

事件标记:

事件标记包括任意、帧 ID、帧数据、眼图模板,默认是<任意>项,如图 8.147 所示。

CAN 总线分析仪

比如选择帧错误,则只会对错误的帧波形做眼图。

事件标记:	<任意> ▼
帧ID范围:	< <u><任意></u> 帧ID 帧数据
帧数据(HEX):	眼图模版 帧错误

图 8.147 软件眼图_事件标记

帧 ID 范围:

帧 ID 范围可选,单击【设置...】可打开"帧 ID 范围"窗口,如图 8.148 所示。帧 ID 中将所有带波形的 CAN 帧 ID 都列举出来。

帧ID范围				x
──● 范围 -				
	数值 0000000	0 💽 掩码	0000000	设置
● 与 (〕或			
	数值 0000000	0 🔺 掩码	0000000	设置
帧ID				
 00000000 0000001 00000003 00000003 0000004 0000006 0000006 0000007 00000008 	00000009 00000008 00000000 00000000 00000000	00000013 00000014 00000015 00000016 00000017 00000018 00000019 0000001A 0000001B	0000001C 0000001D 0000001E 0000001F 00000020 00000020 00000022 00000022 00000023 00000023 00000024	全选 反选 选择 不选
			[确定

图 8.148 软件眼图_帧 ID 范围

如果需要对某一个或者某些帧 ID 做软件眼图,只需选中对应的帧 ID,单击【确定】即可。如果不设置帧 ID,则默认对所有的帧 ID 做眼图。

帧数据:

可在 0~63 位之间任意匹配, 默认是不匹配。

位设置 x
31 0 X X X X X X X X X X X X X X X X X X X
计算器 确定 取消

图 8.149 软件眼图_帧数据

对数据的匹配有以下三种状态:

- X: 对该位数据不进行匹配;
- 0: 若该位数据是 0, 则匹配;
- 1: 若该位数据是 1,则匹配。

CAN 总线分析仪

通过单击对应的位,可以在 X、0、1 三种状态之间切换。

保留和忽略:

保留:以上被筛选出来的条件为必须的。

忽略:以上被筛选出来的条件为排除的。

波形过滤:

由于 CAN 的 ACK 位为多个节点同时应答,所以其幅值会比较高,会影响正常标准的 判断,所以通常情况下需要勾选,开启过滤 ACK 区域对应波形;

2. 生成眼图

眼图配置完成后,返回视图区,单击【第二步:生成眼图】按钮。通过窗口底部的进度 条,可查看当前生成的进度,如图 8.150 所示。这个步骤可能比较长,需要使用处理器速度 比较好的 PC,加快生成速度。

蚁	次件眼图				×
	参数设置 眼图预览				
	旧图	统计注册	计准存 (4	井にあま	
		sturiate	12/08/351+	使成多数	
	> EyeInfo	碰撞次数(13219)	NULL	TEMP130608;CAN-DIFF;	修改配置
					刪除配置
					清空配置
					导入配置
					导出配置
l					
	第一步:添加配置 一	> 第二步: 生成眼图	3> 第三步:	查看眼图 生成报告	

图 8.150【第二步: 生成眼图】

3. 查看眼图

眼图生成完成后,返回软件眼图视图区查看眼图与模板碰撞的统计结果,如图 8.151 所示。

CAN 总线分析仪

次件眼图				
参数设置 眼图预览				
眼图	统计结果	过濾条件	模版参数	
▲ EyeInfo	碰撞次数(13219)	NULL	TEMP130608;CAN-DIFF	修改配置
- 序号(35690)	帧ID(0x392)		·······	
- 序号(35691)	帧ID(0x431)			删除配置
- 序号(35692)	帧ID(0xFB)			
- 序号(35693)	帧ID(0x101)			清空配罟
- 序号(35694)	帧ID(0x278)			
- 序号(35695)	帧ID(0xFB)			
- 序号(35696)	帧ID(0x101)			
- 序号(35697)	帧ID(0x278)			
- 序号(35699)	帧ID(0x2EA)			
- 序号(35701)	帧ID(0x431)			导入配置
- 序号(35702)	帧ID(0x392)			
_ 序号(35703)	帧ID(0xFB)			导出配置
- 序号(35706)	帧ID(0x58B)			
皮里(25711)	★おID(0→2EA)			*
第一步:添加配置	> 第二步:生成明	图> 第三步	⇒: 查看眼图 生成报告	

图 8.151 眼图模板碰撞统计

点击第三步:查看眼图,即可回到 CAN 眼图界面查看眼图结果(注意软件眼图的界面 就是 CAN 眼图界面,只是通道变成了 CAN-SW),如图 8.152 所示。

デ店 开店	 ●止 滞空 ●止 ●止 ○ ● <li< th=""><th></th><th> ・ ・</th><th></th><th>模板 ♥ 时间测量 模板 ♥ 电压测量 数值 ● 象标测量</th><th>★★★ XX 来样点 眼面轮拿; 显示</th><th></th><th> ① 總小 放大 编放 </th><th></th><th></th></li<>		 ・ ・		模板 ♥ 时间测量 模板 ♥ 电压测量 数值 ● 象标测量	★★★ XX 来样点 眼面轮拿; 显示		 ① 總小 放大 编放 		
			Eye Info count :1.58743 400ns/div 1V/div	Voltage M one 2.95V zero 733mV ampl 2.21875V hght 1.75V	Quality Qfact :4.7 SNR :31 dB ER :51 dB	Time Meas X1 :-4. X2 :97 X2-X1 :2.0	sure Volt M 1% Y1 .9% Y2)3906us Y2-Y	Aeasure :4.05V :640mV 1 :1.75V		
6.92 ⁵ 5.92∨ 4.92∨ 3.92∨	% -30%	-10%		30% 2.0 05V	50% 3906us		90%	97.9%	130%	150
1.92V 921mV	A TASABYA			0625V	A A	XASSI		Contract of the second		
-79mV -1.08V			64	10mV	-1					

图 8.152【第三步:查看眼图】

4. 配置说明

CAN 总线分析仪

软	件眼图				×
Γ	参数设置 眼图预览				
	眼图	统计结果	过滤条件	模版参数	
	⊿ EyeInfo	碰撞次数(13219)	NULL	TEMP130608;CAN-DIFF	修改配置
	— 序号(35690)	帧ID(0x392)			
	— 序号(35691)	帧ID(0x431)			刪除配置
	— 序号(35692)	帧ID(0xFB)		/	
	- 序号(35693)	帧ID(0x101)			清空配置
	- 序号(35694)	帧ID(0x278)			
	- 序号(35695)	帧ID(0xFB)			
	— 序号(35696)	帧ID(0x101)			
	_ 序号(35697)	帧ID(0x278)			
	- 序号(35699)	帧ID(0x2EA)			
	- 序号(35701)	帧ID(0x431)			导入配置
	- 序号(35702)	帧ID(0x392)			
	_ 序号(35703)	帧ID(0xFB)			导出配置
	_ 序号(35706)	帧ID(0x58B)			
Ľ	<u> </u>	h告ID(0v2EA)		•	
	第一步:添加配置 -	> 第二步:生成眼	图> 第三步	: 查看眼图 生成报告	

图 8.153 软件眼图_修改配置

修改配置:

单击【修改配置】按钮,可打开"修改眼图配置"窗口,对选中的眼图重新进行配置。 修改配置窗口界面和添加配置的一样。

删除配置:

单击【删除配置】按钮,可将选中的眼图配置从软件眼图视图区中删除。

清空配置:

单击【清空配置】按钮,可将所有的眼图配置从软件眼图视图区中删除。

导入配置:

单击【导入配置】按钮,可导入旧的配置文件,在旧配置文件的基础上继续编辑与使用。

导出配置:

单击【导出配置】按钮,可将当前选中的眼图配置以 xml 的文件格式保存下来,方便下 次调入,继续配置使用。

EyeInfo files(*.xml) 💦 📩

5. 实操测试步骤:

步骤 1: 采集报文和波形

将总线上的信号采集回来,并且进行保存波形,回到实验室后,使用软件打开工程。

步骤 2: 对原始的波形做眼图

点击"测试"中的"软件眼图",如图所示。

图 8.154 打开软件眼图

然后弹出软件眼图的设置框,点击添加配置。

软	件眼图				×
Γ	参数设置 眼图预览				1
	眼图	统计结果	过滤条件	模版参数	
		There are no	items to show.		修改配置
					刪除配置
					清空配置
					导入配置
					导出配置
	第一步:添加酉法	> 第二步: 生成眼图	第三步:	查看眼图 生成报告	

图 8.155 软件眼图实操_添加配置

在眼图设置中,先点击"自动调节"与勾选"过滤 ACK 区域对应的波形",因为 ACK 一般幅值很高而且有延时。如图 8.156 所示。

软件眼图设置		
模板设置		
眼图名称:	EyeInfo	
模板选择:	清除	设置
眼图通道:	CAN-DIF ▼ 范围: 1V/div ▼ (偏移(v): -2.968	自动调节
选择眼图通道	,点击"自动调节",可使生成的眼图位于窗口中心附近。	
帧过滤条件		
帧序号:	0 至 0	🔲 启用
帧类型:	<任意> ▼ 数据长度: <任意> ▼	
事件标记:	<任意> ▼	
帧ID范围:		设置
帧数据 <mark>(</mark> HEX):	00 00 00 00 00 00 00 00 1 1 1 1 1 1 1 1	设置
	● 保留 ⑦ 怨略	
波形过滤		
☑ 过滤ACK区	域对应波形	
		确定

图 8.156 设置自动调节与波形过滤

这时,需要对要做眼图的对象进行过滤。如果按照默认,则对所有的波形进行做眼图, 主要用于快速定位故障节点,如果指定某个 ID 的波形做眼图,则是观察发送这个 ID 的节

CAN 总线分析仪

点是否有问题,这里以前者为例,点击帧 ID 范围的设置,全部选择,如图 8.157 所示。

帧ID范围						
 ◎ 与 ○ 或 	0 设置					
= ▼ 数值 00000000 ▼ 掩码 0000000	0 设置					
 ● 検査ID ② 00000000 ③ 0000000 ③ 00000101 ④ 00000278 ④ 00000281 ④ 00000281 ④ 00000311 ④ 00000312 ④ 00000431 ④ 00000588 	<u>全选</u> 反选 选择 不选					
	确定					

图 8.157 选择帧 ID 范围

点击"确定"后,回到软件眼图设置界面,再点击"确定"。

步骤 3: 生成眼图

可以看到刚才的配置以及被添加到软件眼图视图框中,如图8.158所示,点击生成眼图。 出现进度条,这个过程比较长。

ŝ	次件眼图				*
	参数设置 眼图预览				1
	眼图	统计结果	过滤条件	模版参数	
	EyeInfo	碰撞次数(0)	0000000;000000FB;000	CAN-DIFF;range(1V/div)	修改配置
					删除配置
					清空配置
					导入配置
l]
	第一步:添加配置	> 第二步: 生成眼图	▋ 第三步: 3	查看眼图 生成报告	

图 8.158 生成眼图

步骤 4: 新建自定义模板

生成眼图完毕后,点击查看眼图,如图 8.159 所示。

CAN 总线分析仪

銰	《件眼图				×
	参数设置 眼图预览				7
	眼图	统计结果	过濾条件	模版参数	
	EyeInfo	碰撞次数(0)	0000000;000000FB;000	CAN-DIFF;range(1V/div)	修改配置
					刪除配置
					清空配署
					与人配置
					导出配置
	第一步:添加配置	> 第二步: 生成眼图	第三步: 1	查看眼图 生成报告	

图 8.159 查看眼图

然后在 CAN 眼图的界面中,看到生成的眼图,发现在 70%位置有个异常的突起,所以 我们现在要研究是哪个帧产生了它。故点击编辑模版。使用鼠标左键或者添加多边形,将这 个突起框起来,点击设置模板。如图 8.160 所示。

		CANScope-离线		
		示续版 ☑ 时间测量 ↓		
T CAN报文 🕢 网络共享 📓 CAN波形 🔳 CAN眼图	× CAN示波器			
	Eye Info Voltage count :1.58743M 2ero :2.94V 400ns/div ampl ampl :0.0625V 1V/div hght	Quality Time Me Qfact X1 SNR X2 ER X2-X1	asure Volt Measure 4.1% Y1 :4.09V 77.9% Y2 :687mV 2.03906us Y2-Y1 :0.0625V	
6.9750% -30% -10%	10% 30%	50% 70%	90% 110%	130%
5.97V -4.1%		03906us		
4.97V	4 001/			
3.97/	4.03V		设置模板	Win Con
2.977	-3.40625V		10 11/ B	
1.97V		A AMO		
32mb	687mV			
-1.03V				

图 8.160 框住异常电平设置模板

然后点击菜单栏上的导出模板,起个名字点击确定,如图 8.161 所示。

-	‡享 波形	眼圈	示波器	PORT板				
Ŧ	DC			(X)	导出模板			×
4	載入模板 编辑模	板号出植	版 添加多达	形 删除多边形	模板名称:	TEMP131201		确定
			眼	困模板	模版用途:	CAN-DIFF	•	
1	T CAN眼图 >	(导出	典板 天波器					

CAN 总线分析仪

图 8.161 导出模板

步骤 5: 导入自定义模板再次生成眼图

返回软件眼图,点击修改配置,如图 8.162 所示。

銰	7件眼图				
ſ	参数设置 眼图预览				
	田岡	统计结果	讨崺冬件	柑 版	
	EveInfo	减摘次数(0)	00000000000000000000000000000000000000	CAN-DIFE range(1V/div)	
	Lycino			erat e11, enge(11, e1.).	
					開除配置
					清空配置
					导入配置
					日中町平
	第一步:添加配置	> 第二步: 生成眼图	> 第三步: 3	查看眼图 生成报告	

图 8.162 修改配置

然后在模板选择右边选择设置,选中刚才保存的模板,点击导入。如图 8.163 所示。

 $\textcircled{\sc c}2022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

软件	眼图设	置						23
	模板设	置						
	眼昏	图名称:	EyeInfo					
	1-#+1							
		奴选择:				1	那木 [反血…	ノ
	眼間	图通道:	CAN-DIF	▼ 范围:	1V/div 🔻	偏移(V): -2.968	3 自动调节	Ħ
		國模板						×
	0 ¢āù	眼图模板:	: D:\举	品中心\CANS	COPE\实际测试样本	、\众泰传统车\CA	N0608 浏归	ð
	¢	夕称		通道	由口范围(V/div)	由工偏移00	状态	
		ISO1189	8 10	CAN-DIF	0.5	-1.25	1///3	
	ц.	ISO1189	8_10a	CAN-DIF	0.5	-1.25	只读	
	Ę	TEMP130	418	CAN DIF	0.5	1.731	1 734	
		TEMP131	.201	CAN-DIF	1	-2.968	-2.968	
	"							
	¢							
		H	删除自定义	模版	清空自定义模版		保存	
	波刑							
				MA.		\wedge	All an	
			A late and the constant	J¥ k - V ∧ Sÿ	1		HA WAY	
		1/188	8 M	1	K MARKA X			
						97992092092094999999		
)						
						导入	取 》	۴ 📄

图 8.163 导入自定义模板

其它配置不做改动,然后点击确定。再次点击生成眼图。如图 8.164 所示。

眼图	统计结果	过濾条件	模版参数
EyeInfo	碰撞次数(0)	0000000;000000FB;000	TEMP131201;CAN-DIFF;
第一步:添加配置	> 第二步: 生成眼图	3 第三歩: :	查看眼图 生成报告

图 8.164 再次生成眼图

步骤 6: 查看异常波形的源头

生成完毕,可以看到软件眼图视图中的碰撞结果,如图 8.165 所示。为 ID: 0x392 这个 CLG ©2022 Guangzhou ZHIYUAN Electronics Co., Ltd.

User Manual

CANScope 用户手册

CAN 总线分析仪

报文产生了这个异常。

蚁	《件眼图				—
	参数设置 眼图预览				
	Plast	统计结果	讨谑条件	栉版参数	
1	⊿ EyeInfo	碰撞次数(1)	0000000;000000FB;000	TEMP131201;CAN-DIFF;	修改配署
	上 序号(47362)	帧ID(0x392)			1397/Hill
					刪除配置
					清空配置
					导入配置
					导出配置
	第一步:添加配置 一	> 第二步: 生成眼图	第三步: 第三步: 第三步: 第三步: 第三步: 第三步: 第三步: 第三步:	查看眼图 生成报告]

图 8.165 眼图碰撞结果

双击这个帧 ID, CAN 报文界面可以定位到这个帧。用户可以获知产生这个帧的具体发 生时间和数据情况。如果切换到 CAN 波形,还可以看到具体异常的位置,如图 8.166 所示。

	CAN报文 >	🔾 😡 网络共享 🛛 🖉	CAN波形 🕕	CAN眼图	CAN示波器			
	1 16 76 7	6 🎋 🖗 🖹 🛤	自动量程 🕺 自	动滚屏 🔽 清陽	过滤 🛃 清除列表 🜗			
序	5	时间	ALCOLO -	万回	帧类型	数据长度		事件标记
在	世61493人…	▼ 在此处输入文字	ア 在此处输入	7 在此处	输入 🍸 在此处输入	☞ 在此处输入… ☞	在此处输入 🍸 在此处输入:	文字 🍸 在此处 🎲 文字
	47,362	00:01:30.212 987	成功		标准数据帧	8 3	92 H 00 FC 58 00	01 FF 0F
200	47,363	00:01:30.214 545	成功	接收	软件眼图			
10	47,364	001010000000000000000000000000000000000	stin	接收				
100	47,365	00:01:30.217 319	成功	接收	参数反直 服图预兑			
100	47,366	00:01:30.217 562	成功	接收	眼图	统计结果	过滤条件	模版参数
200	47,367	00:01:30.217 812	成功	接收	▲ EyeInfo	碰撞次数(1)	0000000;000000	FB;000 TEMP131201;CAN-DIFF;
	47,368	00:01:30.222 /94	成功	接收	L 序号(47362	帧ID(0x392)		
	47,309	00:01:30.227 292	5K-5J	授収	5			
	47,570	00:01:30.227 555	FTTh	按収				
	47,371	00:01:30.227 783	FTTh	協力				
		001011001201 017						
- C4	AN报文 (🧿 网络	格共享 🔄 CAN波形 🗙		N云波器				- 1
		\	and other marking the other	ALCONTRACTOR AND A DECEMBER				• ^
				0.02 (DCHH				
	4.92	264us	265us	266us :	267us 268us	269us 270us	271us 272us	273us 274us
	4.93	264us	265us	266us :	267us 268us	269us 270us	271us 272us	273us 274us
	4.93 CAN-H 3.93		265us	266us :	267us 268us	269us 270us	271us 272us	273us 274us
	4.93 CAN-H 3.93 2.93 3.09	1 264us 8V - 8V - 8V - 4V -	265us	266us :	267us 268us	269us 270us	271us 272us	273us 274us
-(4.93 CAN-H 3.93 2.93 3.09 CAN-L 1.51	8V - 8V - 6V -	265us	266us :	267us 268us	269us 270us	27195 22285 	27306 227405
	4.93 CAN-H 3.93 3.09 CAN-L 1.51 -62.55		265us	266us :	257 es 266be -	269us 270us	27 196 27 293 	27294
	4.93 CAN-H 3.93 2.93 3.09 CAN-L 1.51 62.5n CAN-& 2.73	Image: State of the s	265us	266us : .531V	267us 268us	269us 270us	271us 272us 	27205 27205
	4.93 CAN-H 3.93 3.09 CAN-L 1.51 62.5m CAN-签分 2.73	Image: Second	265us 	266us : 	267 us 268us	269us 270us	271us 272us 	27205 27405
	4.93 CAN-H 3.93 3.09 CAN-L 1.51 -62.5n CAN-整分 2.73 468.8r	W - 8V -	263us 4 3 92	266us : 	267us 268us	269us 270us	271us 272us 	
	4.93 2.93 3.09 CAN-L 1.51 -62.55 CAN-整分 2.73 468.57 CAN-逻辑	W - 8V - 8V - 6V - 8V -	265us 4 4 92	266ur : : .531V .6.11V .0.11V .0.11V .0.11V	267us 268us	269us 270us 	271us 272us 1	27306 27495
	4.93 293 3.09 CAN-L 1.51 	Image: Control of the second	263us 4 3 92	266ur : : .531V :811V :811V :811V :811V :811V :811V	267us 268us	269us 270us	271us 272us 	
	4 53 263 3 00 CAN-L 1.51 <u>458</u> CAN-遵信 CAN-逻辑		265us 4 3 92	266ur : : .531V .611V .811V .811V .811V .811V .811V	267us 268us ···· /	269us 270us 	271us 272us 	27306 27465
	4 53 2 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		265us 4 3 92	266ur : : .531V 1.531V 1 261U 1	267us 268us	269us 270us 	プロ 271us 272us 1 · · · · · · · · · · · · · · · · · · ·	27306 27465
	4.53 3.93 3.99 CAN-L 1.51 	Image: Control of the second	265us 4 3 92	266us : : 1531V .811V 20 InV 1	267us 268us	269us 270us 	271us 272us 	273us 274us 274us 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

图 8.166 定位 CAN 报文与波形

小结: CANScope 软件眼图功能具备还原现场物理状况的能力, 主要用于:

CAN 总线分析仪

- 1. 异常波形反诉溯找出对应的 CAN 报文(CAN 节点),确定其发生的时间和原因;
- 2. 某一个 CAN 报文的眼图,测量其幅值、位宽等特性。

8.3 传输层分析测试

CAN 的传输层一般指在报文传输过程中的协议规则,由于 CAN 也属于半双工通信,所 以其通信规则是保证数据能及时可靠传输的保证,而 CANScope 的传输层分析测试,正是验 证该点的可靠性工具。

8.3.1 总线利用率与流量分析

CAN 总线本质上还是半双工通讯,就是"单行道",即一个节点发送的时候其它节点无 法发送数据,虽然 CAN 报文 ID 有优先级的区分,但如果高优先级一直占用总线,导致低 优先级的节点就无法发出数据,这就是堵塞现象,所以控制流量,防止堵塞是总线健康正常 通讯的基本要素。

1. 总线利用率

操作 CANScope 能正常接收报文后,然后打开 CAN 报文中工具的总线利用率,即可获得目前总线的基本流量概况,如图 8.167 所示。

图 8.167 总线利用率

点击刷新时间,改为较快,观察一段时间:

如果利用率都没有超过30%,则说明总线流量较好,没有明显的拥堵情况;

如果有利用率突发超过 70%,则说有堵塞情况,建议进行下面第二步流量分析的排查;

CAN 总线分析仪

如果平均利用率都在70%以上,则说明总线严重拥堵,必须进行流量分析整改。

2. 流量分析

先取得 1 万-10 万帧的评价基数,然后停止运行,点击 CAN 报文中工具的流量分析,在 CAN 报文下面生成以时间轴排列的 CAN 报文时序图,如图 8.168 所示。

这样我们就可以发现有拥堵的位置,如图 8.169 所示。

-	CAN 报文 3	AN 报文 × 🖓 网络共享 📓 CAN 波形 🖣 CAN 親密 🐛 CAN 示波器									
	a 🔥 % 🎗	5 % 🙀	1 C	兀配波特率与自	动量程 😂 自动滚屏 🖁	◎清除过滤 えき	清空列表 🕠				
序	号	时间		状态	传输方向	帧类型	数据长度	帧ID	帧数据	事件标记	注释
在	此处输入… 、	₹ 在此处籍	入文字	▼ 在此处输	入 🝸 在此处输入	▼ 在此处输入	. 🭸 在此处输入	▼ 在此处输入	▼ 在此处输入文字	在此处输入文字	▼ 在此处描
M	158,075	00:12:33	273 017	成功	接收 (本地)		8	08EA7F9F H	D0 D1 D2 D3 D0 D1		
	158,076	00:12:33	277 337	成功	接收 (本地)	扩展数据帧	8	08EADF9F H	D0 D1 D2 D3 D0 D1		
1	158,077	00:12:33	282 353	成功	接收 (本地)	扩展数据帧	8	08EA7F9F H	D8 D1 DA D3 D0 D1		
1	158,078	00:12:33	303 051	成功	接收 (本地)	扩展数据帧	8	08EADF9F H	D0 D1 D2 D3 D0 D1		
1	158,079	00:12:33	306 935	成功	接收 (本地)	扩展数据帧	8	08E37F9F H	D0 D1 D2 D3 D8 D9		
1	158,080	00:12:33	307 206	成功	接收 (本地)	扩展数据帧	8	08EABF9F H	D0 D1 D2 D3 D0 D1		
1	158,081	00:12:33	312 998	成功	接收 (本地)	扩展数据帧	8	08EB3F9F H	D0 D1 DA D3 D0 D1		
1	158,082	00:12:33	320 309	成功	接收 (本地)	扩展数据帧	8	08E4FF9F H	D0 D1 D2 D3 D0 D1		
1	158,083	00:12:33	322 626	成功	接收 (本地)	扩展数据帧	8	08E4FF9F H	D0 D1 D2 DB D0 D1		
1	158,084	00:12:33	325 049	成功	接收 (本地)	扩展数据帧	8	08E3BF9F H	D0 D1 D2 D3 D0 D1		
100	158,085	00:12:33	332 726	成功	接收 (本地)	扩展数据帧	8	08E57F9F H	D8 D9 DA DB D8 D9		
100	158,086	00:12:33	333 205	成功	接收 (本地)	扩展数据帧	8	08E9DF9F H	D0 D1 D2 D3 D0 D1		
i (î	2 💔 🔎 🛃	<u>r: 47:</u> [M]	IC C		403.585s						
			403.6s	• 40 • • • • • • •	3.65s 403.7s	403.7	5s 403.8	s 403.85	s 403.9s	103.95s 40	14s 4(
	CAN报文	20% -			17.8	125%					
	- 总线利用	车(%)0%—			15.9	375%					

图 8.169 拥堵位置

按住 CTL, 鼠标左键放大查看对应区域, 观察哪些 ID 导致了堵塞, 如图 8.170 所示。

图 8.170 造成拥堵的 CAN 报文

可以将鼠标停在帧之间,可以自动测量帧间隔宽度,如图 8.171 所示。

CAN 总线分析仪

图 8.171 测量帧间隔时间

CAN 虽然以 ID 仲裁发送为特色,但仲裁结束时,容易产生尖峰脉冲,有导致位翻转的 隐患,特别是在容抗较大场合,容易导致位错误,如图 8.172 所示。所以减少拥堵,可以提高可靠性。

图 8.172 ID 仲裁的风险

8.3.2 报文周期统计

CAN 总线通信协议中,最常见的就是定时的报文发送,比如汽车的传感器基本都是定时发送数据,越关键性的信息,发送周期越小,比如速度信息更新一般为 10ms,油量信息更新为 250ms,所以测试 CAN 总线报文周期的准确性,对于应用来说有着非常重要的意义。

报文周期统计功能操作比较简单,先记录一定时间的报文作为测试样本,比如记录 10 万帧,这样参考价值比较大,然后点击 CAN 报文中工具的报文周期,如图 8.173 所示。

图 8.173 报文周期统计功能

打开报文周期统计的界面后,选择报文周期最大误差率,即报文周期容忍的偏差度,再 点击开始统计,即可将当前接收到的报文进行周期分析,筛选出偏离误差率的 CAN 报文。 如图 8.174 所示。

CAN 总线分析仪

序号		时间	状态	报	文周期统计						
在此	处输入	7 在此处检入文字	マ 在此处:								
N	4,901	00:00:09.980 712	成功		项目	次数	平均周期	最长周期	最短周期	标准差	<u>^</u>
ົ	4,902	00:00:09.901 384	成功		ID(0x001)	0/105	233.22356ms	233.798ms	232.7395ms	228.747us	
10	4,903	00:00:09.981 968	成功		ID(0x002)	0/16	1.15509396s	1.1553835s	1.1548185s	111.625us	
W	4,904	00:00:09.982 552	成功		ExtID(0x0000	0/2799	9.99402ms	11.9555ms	8.015ms	587.569us	E
W	4,905	00:00:09.983 124	成功		ExtID(0x00F2	0/30	194.53832ms	195.4255ms	193.65ms	398.155us	
W	4,906	00:00:09.984 808	成功		ExtID(0x00F2	0/32	194.55219ms	195.0005ms	194.0865ms	245.692us	
W	4,907	00:00:09.985 396	成功		ExtID(0x00F2	0/31	194.55706ms	195.603ms	193.4745ms	445.658us	
W	4,908	00:00:09.987 584	成功		ExtID(0x00E2	2/20	208.43844ms	389.0795ms	193.6225ms	49.9546352ms	
W	4,909	00:00:09.991 311	成功		_ 序号(4901)	1	388.011ms				
W	4,910	00:00:09.991 895	成功		序号(6919)	1	389.0795ms				
W	4,911	00:00:09.992 479	成功		ExtID(0x00F2	1/30	201.25008ms	389.0945ms	193.595ms	35.5009816ms	
W	4,912	00:00:09.993 063	成功		ExtID(0x00F2	0/31	194.55733ms	195.632ms	193.4505ms	412.718us	
W	4,913	00:00:09.993 635	成功		ExtID(0x00F2	0/31	194.54226ms	195.473ms	193.6095ms	301.675us	
10	4,914	00:00:10.002 674	成功		ExtID(0x00F2	1/30	201.25067ms	389.074ms	193.478ms	35.4975043ms	
W	4,915	00:00:10.003 258	成功		ExtID(0x0C3C	0/16	1.15509663s	1.156159s	1.154027s	545.457us	
10	4,916	00:00:10.003 842	成功		ExtID(0x0C3C	8/130	215.34771ms	465.206ms	197.017ms	59.9320972ms	
W	4,917	00:00:10.004 414	成功		ExtID(0x0C3C	0/16	1.15513056s	1.1559355s	1.1541685s	518.828us	-
U	4,918	00:00:10.005 014	成功								
10	4,919	00:00:10.011 286	成功		报文周期最大误	差率 (%)	20			开始统计	
U	4,920	00:00:10.011 869	成功								

图 8.174 报文周期统计工具

图中报文周期最大误差率从 10%~100% 可选, CAN-bus 行业应用的通用规范一般是 20% 的偏差, 所以默认为 20%。统计结果是将所有的报文的平均周期、最长周期、最短周期、标准差统计出来。然后次数中包含了"偏离个数/总帧数",比率一目了然。注意这里的周期 是指某个 ID 的 CAN 帧, 与上一次同一个 ID 的 CAN 帧间的时间间隔。

单击有偏差的报文,展开后,可以见其实际的偏差数值。双击对应的报文,可查看其发 生的时刻。便于定位问题出现的时间。

8.3.3 总线流量压力测试

为了检验被测节点数据接收能力,用该波特率下最高的流量去冲击,如果节点接收程序 处理不当,就会导致缓冲溢出,最终产生超载帧。

选定被测节点所能识别的 CAN 报文,以重复次数 255,发送次数无限,发送间隔 0ms,勾选总线应答,递增选择不递增,发送即可达到最高负荷。如图 8.175 为 1M 波特率下,CANScope 以 7000 帧/秒的流量冲击被测节点。

测试按1分钟为一个测试周期,如果点击帧统计,没有发现有错误帧,即表示通过测试。如果发现有错误帧,即表明有超载情况发生,需要改进接收程序。

程序段	处理方法
中断程序	只接收数据,压入软件缓冲区,而不对数据进行处理。
主程序	从软件缓冲区中取出数据,进行数据处理。

表 8.10 接收程序处理方法

User Manual

CANScope 用户手册

CAN 总线分析仪

图 8.175 总线流量压力测试

8.3.4 网络共享

CANScope 分析仪利用以太网通信实现数据的共享,用户只需要一台 CANScope 硬件来 采集报文数据,多台电脑打开 CANScope 软件,建立好连接便可同时分析同一数据(无波形)。

同时本机其它应用软件可以以 Socket 套接字的编程方式连接 CANScope 软件,实现数据的二次开发。

鼠标单击主界面上的"网络共享"选项卡,可打开"网络共享"界面,如图 8.176 所示。

图 8.176 网络共享界面

网络共享功能将数据共享到服务器(本机),其它用户通过与服务器建立连接来访问共享的数据。

CAN 总线分析仪

网络共享窗口:

①服务器设置:连接 CANScope 的 PC,如果需要别人连接来传输数据,则需要设置被连接的端口和最大连接数量,然后点击开启服务,如果不需要共享,则点击停止服务;
②连接到服务器:要得到数据的 PC,需要填入要连接 PC 的 IP 和端口,然后点击开启连接,如果需要断开则点击断开连接。

连接视图:

如图 8.177 所示为连接视图,可查看已建立连接的详细信息。

	CAN报文 🕓 网络	A共享 × 💽	CAN波形 🗰 CAN眼	图 🖉 CAN示	波器			
序号	, 计算机名	客户端软件	IP地址:端口	发送数据量	接收数据量	发送状态	接收状态	连接时间
1	HUANGMINSI	CANScope	192. 168. 1. 103: 12740	OB	144B	正常 -> 正常	正常 <- 正常	2013-12-1 21:48:1

图 8.177 网络共享_连接视图

CANScope 中的高级中的各种应用层分析,都是需要进行网络共享来获取数据的。所以 当点击高级中的某个功能时,软件会自动启动网络共享。

8.3.5 VC/VB/C#二次开发

使用 CANScope 的网络共享,用户可以在自己的程序中调用我们给出的动态库,实现二次开发。在 CANScope 软件的安装目录下,有各种编程例子,如图 8.178 所示。

🕞 🕞 🗢 📗 C:\Program Files\zhiyuan\CANScope\NetExample								
	包含到库中 ▼ 共享 ▼ 新建文件夹							
숮 收藏夹	名称	修改日期	类型					
🐌 下载	퉬 Bin	2013/11/29 14:04	文件夹					
📃 桌面	CANScopeExample_Ex	2013/11/29 14:04	文件夹					
🗐 最近访问的位置	CANScopeNet_Example_Csharp	2013/11/29 14:04	文件夹					
	CANScopeNet_Example_LabVIEW	2013/11/29 14:04	文件夹					
二 左	CANScopeNet_Example_VB	2013/11/29 14:04	文件夹					
₩ 视频	🍌 CANScopeNet_Example_VC	2013/11/29 14:04	文件夹					

图 8.178 二次开发编程例子

(1) 发送与接收报文格式:

接收报文格式结构体

```
typedef struct _FRAME
{
    DWORD num; //序号
    DWORD timeH; //时间戳: (timeH<<16)|timeL, 10 纳秒为单位
    USHORT timeL;
    DWORD waveStart; //波形起始地址,内部使用
    DWORD waveEnd; //波形结束地址,内部使用
    BYTE errorCode; //bit5 表示方向 0-接收, 1-发送
    FRAME_WRAPPER wrapper;
}FRAME,*PFRAME;
```


 $\textcircled{\sc c}2022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

发送报文格式结构体:

typedef struct _FRAME_WRAPPER{
BYTE dataLen:4; //数据长度: 取值范围为 0~8
BYTE source:1; //数据来源: 0-本地; 1-其它
BYTE reserved0:1; //保留
BYTE frameType:2; //帧类型: 00-标准数据帧;01-标准远程帧;10-扩展数据帧;11-扩展远程帧
union{
//标准帧
struct {
//使用(ntohs(frameID)>>5)可转换成实际的帧 ID
USHORT frameID; //高位{frameID[7:0],frameID[15:13]}低位
BYTE data[8]; //帧数据
BYTE reserved[2]; //保留
}standard;
//扩展帧
struct {
//使用(ntohl(frameID)>>3)可转换成实际的帧 ID
DWORD frameID; //高位{frameID[7:0],frameID[15:8],frameID[23:16],frameID[31:27]}低位
BYTE data[8];
}extend;
}frame;
}FRAME_WRAPPER,*PFRAME_WRAPPER;
(2) 接口函数说明:

Connect

- 函数原型: HRESULT STDMETHODCALLTYPE Connect(BSTR addrIP,USHORT port, VARIANT otherData);
- 函数功能: 与服务器建立连接;
- 参数说明: addrIP【in】服务器 IP 地址;

Port【in】服务器监听端口号;

otherData【in】连接密码,SafeArray 型变量

- 返回值: 成功返回 S_OK, 否则返回 S_FAILED;
- 补充说明:可使用函数 GetLaseError()获取最后一次失败的错误号。

Stop

- 函数原型: HRESULT STDMETHODCALLTYPE Stop(void);
- 函数功能:断开与服务器的连接;
- 参数说明:无;
- 返回值: 成功返回 S_OK, 否则返回 S_FAILED;
- 补充说明:可使用函数 GetLaseError()获取最后一次失败的错误号。

SendData

• 函数原型: HRESULT STDMETHODCALLTYPE SendData(BYTE dataType, VARIANT

CAN 总线分析仪

bufData);

- 函数功能:发送数据;
- 参数说明: dataType 【in】数据类型;

bufData【in】待发送数据,SafeArray型值;

- 返回值: 成功返回 S_OK, 否则返回 S_FAILED;
- 补充说明:可使用函数 GetLaseError()获取最后一次失败的错误号。

RecvData

- 函数原型: HRESULT STDMETHODCALLTYPE RecvData(BYTE *dataType, VARIANT *bufData,LONG timeWait);
- 函数功能: 接收数据;
- 参数说明: dataType 【out】数据类型;

bufData【out】接收到的数据,SafeArray 类型值;

timeWait 【in】等待时间

- 返回值:成功返回 S_OK,否则返回 S_FAILED;
- 补充说明:若等待时间为-1,则已阻塞方式调用接收函数,知道有数据到达函数才返回。
 若等待时间为0,则异步调用接收函数,无论有无数据函数均直接返回。
 若等待时间值大于0,函数会等待指定时间,若仍无数据到达,则函数返回。
 可使用函数 GetLaseError()获取最后一次失败的错误号。

GetDataSize

- 函数原型: HRESULT STDMETHODCALLTYPE GetDataSize(ULONG *dataSize,LONG timeWait);
- 函数功能:获取待接收数据大小;
- 参数说明: dataSize 【out】数据大小值;

timeWait【in】等待时间;

- 返回值: 成功返回 S_OK, 否则返回 S_FAILED;
- 补充说明:参见
- **RecvData** 补充说明。

GetLastError

- 函数原型: HRESULT STDMETHODCALLTYPE GetLastError(ULONG *errorNum);
- 函数功能:获取最后一次错误的代码;
- 参数说明: errorNum【out】错误代码;
- 返回值:; 成功返回 S_OK, 否则返回 S_FAILED;
- 补充说明:错误代码含义
 - 0, //连接成功
 - 1, //客户端已连接到服务器,不可以再次连接
 - 2, //连接失败
 - 3, //密码错误
 - 4, //已达到最大连接数
 - 5, //不存在连接

 $@2022 \ \mbox{Guangzhou} \ \mbox{ZHIYUAN} \ \mbox{Electronics} \ \mbox{Co., Ltd.}$

CAN 总线分析仪

6, //没有数据到达

- 7, //连接发生错误
- 8, //客户端对象没有创建成功

(3)使用说明:

接口依赖:

"CANScopeNet.dll"位于软件安装目录下的 NetExample\Bin 目录中,同目录中另存在 "NetClient.dll","NetProtocol.dll","Security.dll"三个动态链接库,使用时应确保此四个 DLL 处于同一目录下,否则网络接口不能正常工作。

"CANScopeNet.dll"为 COM 接口,使用前需要对该接口进行注册。否则接口无法使用,测试程序也无法正确运行。开发者可以自行调用 regsvr32 命令进行注册,也可双击 NetExample\Bin 目录下提供的"Install.bat"及"Uninstall.bat"进行注册及注销 "CANScopeNet.dll"组件。

使用说明:

使用"CANScopeNet.dll"接口与 CANScope 主程序进行数据通信时,需要先调用 Connect() 函数,传入待连接 CANScope 软件所在计算机的 IP 地址及监听端口,若存在连接密码,可 将密码从最后一个参数传入。连接结果可使用 GetLastError()获得。

连接成功后可使用 SendData()函数发送数据,使用 RecvData()函数接收数据,若只希望获得待接收数据的大小,可调用 GetDataSize()获取该值。

数据收发完成后,应调用 Stop()函数断开与服务器的连接。

以下是经过实际测试,通过二次开发的软件与 canscope 标准软件的报文进行对比,其 中时间戳精度为 10us,波形字段数据为波形起始结束地址仅内部使用,暂未开放。

 02 00 00 00 (序号) 18 AC 00 00 (时间高位) AF 94 (时间低位) 20 1E 9A 01 E0 67 9A 01

 (波形) 00 (错误码) 08 (数据长度/帧信息) 0000 (ID) 00 01 02 03 04 05 06 07 00 00

🔟 2 00:00:28.872 920 成功 接收 (本地) 标准数据帧 8 000 H 00 01 02 03 04 05 06 07 H

04 00 00 00 06 C9 1F 00 23 38 58 F4 9A 01 F8 3A 9B 01 00 08 23 01 00 01 02 03 04 05 06 07 00 00

4 00:22:45.166 141 成功 接收 (本地) 标准数据帧 8 123 H 00 01 02 03 04 05 06 07 H

06 00 00 00 F5 F3 22 00 7F FF D0 CD 9B 01 D0 22 9C 01 00 88 45 23 01 00 00 01 02 03 04 05 06 07

6 00:25:01.218 732 成功 接收 (本地) 扩展数据帧 8 00012345 H 00 01 02 03 04 05 06 07 H

07 00 00 00 71 A8 28 00 59 AE 78 71 9C 01 38 57 9C 01 00 88 78 56 34 12 00 01 02 03 04 05 06 07

7 00:29:06.247 143 成功 接收 (本地) 扩展数据帧 8 12345678 H 00 01 02 03 04 05 06 07 H

8.3.6 Labview 二次开发

包含 6 个导出函数,用于实现客户程序与 CANScope 主软件间的数据通信。为了方便用 户使用 Lab VIEW 进行开发,特提供了 6 个导出函数的子 VI 版本,位于程序安装目录下 NetExample\CANScopeNet_Example_Lab VIEW\Sub VI 目录中,下面详细介绍各子 VI 的功能。

1. 子 VI 说明

CAN 总线分析仪

Get Connect ID:

创建连接 ID: 返回一个唯一的连接 ID,用于标志一个连接,其它所有子 VI 都将用到这个 ID 值。

Function return : 连接 ID, I32 型值。

Delete Connect ID:

删除连接 ID: 删除指定的连接 ID, 回收该连接所使用的所有资源。

Function return: 函数执行结果, I32 型值。

ConnectID: 连接 ID 值。

Connect:

ipAddr port password

建立连接:通过该函数,用户可以与 CANScope 主软件建立连接。

Function return: 函数执行结果, I32 型值。

ConnectID: 连接 ID 值。

ipAddr: CANScope 主软件所在计算机的 IP 地址。

port: 监听端口号。

password: 连接密码。

Stop:

connectID • STOP • Function return

断开连接:断开与 CANScope 主软件的连接 Function return:函数执行结果,I32型值。 ConnectID:连接 ID 值。

Send:

CAN 总线分析仪

发送数据:用户使用该函数向 CANScope 主软件发送 CAN 报文数据。

Function return: 函数执行结果, I32 型值。

connectID: 连接 ID 值。

dataType: 发送的数据类型,目前只支持 CAN 报文数据,填入 0。

hData:存储待发数据的u8数组。

Recv:

dataType hData waitTime

接收数据:使用该函数从 CANScope 主软件接收报文数据。

Function return: 函数执行结果, I32 型值。

connectID: 连接 ID 值。

dataType: 接收到的数据类型。

hData: 用于存储接收数据的 u8 数组。

waitTime: 若当前无数据到达,需要等待时间(ms),-1: 阻塞方式调用,知道接收到数据 才返回,0:若无数据则直接返回,大于0:若无数据到达,则等待当前数值的时间后返回。

2. 返回值说明

除了获取和删除连接 ID 的两个子 VI, 其它 4 个子 VI 都会通过 Founction return 返回执行的结果。该字段为 32 位有符号整型数据。其值所代表的含义见表 8.11 所示。

返回值	含义
0	操作成功
1	连接已存在
2	操作失败
3	服务器已达到最大连接数
4	不存在连接
5	没有数据到达
6	连接发生错误
7	客户端对象没有创建成功,缺少必须模块时引发
3	服务器已达到最大连接数

表 8.11 返回值含义说明

3. 使用说明

CAN 总线分析仪

如果使用 CANScope 提供的子 VI 进行开发,必须确保 "CANScopeNet_Lab VIEW.dll", "NetClient.dll", "NetProtocol.dll", "Security.dll" 四个动态链接库同时存在于执行目录中。

使用说明:

使用接口进行开发可遵循如下几个步骤:

1. 调用 Get Connect ID 子 VI 创建一个连接 ID;

2. 调用 Connect 子 VI,并传入上步中创建的连接 ID,CANScope 主软件所在计算机的 IP 地址,监听端口号及连接密码(没有密码可留空),与之建立连接,Founction return 返回连接操作的结果,具体返回值意义见表 8.11 所示;

3. 若上步连接建立成功,可使用 Send 及 Recv 函数进行数据通信;

- 4. 通信结束, 使用 Stop 子 VI 断开当前的连接;
- 5. 调用 Delete Connect ID 子 VI, 删除当前连接 ID, 回收资源。

具体使用参阅位于"NetExample\CANScopeNet_Example_LabVIEW"目录下的实例代码 "CANScopeNet_Example_LabVIEW.vi"。

8.4 应用层分析测试

CANScope 虽然在物理层和链路层分析方面有着无与伦比的能力,但在应用层分析方面 也非常强大,可以帮助客户灵活分析协议,导入标准的 DBC 文件进行分析,还可以进行自 定义协议分析。

8.4.1 报文协议解析列表(可导入 DBC 文件)

在 CAN 报文界面,所有报文都是以时间顺序往下刷新,这样即使进行筛选也是很不方便的,无法实时考察报文种类与数据变化。特别是在协议解析时,无从下手,所以 CANScope 在"高级"的"分析工具"功能中包含了"报文协议解析列表",如图 8.179 所示。

图 8.179 报文解析列表

1. 分类动态显示解析协议

当 CANScope 的 CAN 报文界面开始接收数据后,就可以点击打开"报文协议解析列表", 然后可以看到这个软件自动连接网络共享,解析数据,如图 8.180 所示。

CAN 总线分析仪

🔏 协议解析 - C	ANFrameAnalyseList							• ×
· 文件(F) 编辑(E) 视图(V) 帮助(H)							
	(h C 4 ? .							
() 连接服务器	🗊 加載DBC 🛛 🔢 暂停 🛓t 増量	时间模式 💽 分类显示 👰 自动滚屏	清除列表 协议类型 Default	•				
序号	时间	名称 分类显示	帧ID	SA	Dest	帧类型	数据长度	帧数: ^
🛨 🖂 2376	00:00:29.179 185	VEP1	00FEF704 H	04		扩展数据帧	8	00 00
🛨 🖂 2377	00:00:29.183 577	HOURS	00FEE505 H	05		扩展数据帧	8	0A 0:
🛨 🖂 2378	00:00:29.188 049	SHUTDN	00FEE407 H	07		扩展数据帧	8	00 00
1 🖂 🖂 🗄	00:00:29.192 425	EFL_P1	00FEEF03 H	03		扩展数据帧	8	00 00
🛨 🖂 2380	00:00:29.196 825	IC1	00FEF606 H	06		扩展数据帧	8	00 00
🛨 🖂 2381	00:00:29.201 281	EEC2	00F00302 H	02		扩展数据帧	8	00 00
1 🖂 🖂 🗄	00:00:29.205 616	EEC1	0CF0041A H	1A		扩展数据帧	8	00 00
🛨 🖂 2383	00:00:29.208 526	EEC2	00F00302 H	02		扩展数据帧	8	00 00
🗄 🖂 2384	00:00:29.211 747	HOURS	00FEE505 H	05		扩展数据帧	8	OB 0:
1 🖂 🖂 🗄	00:00:29.222 999	EEC2	00F00302 H	02		扩展数据帧	8	00 00
🛨 🖂 2386	00:00:29.227 271	EEC1	0CF0041A H	1A		扩展数据帧	8	00 00
🛨 🖂 2387	00:00:29.230 188	HOURS	00FEE505 H	05		扩展数据帧	8	OC 0:
1 🖂 🖂 🗄	00:00:29.233 626	EEC2	00F00302 H	02		扩展数据帧	8	00 00
🛨 🖂 2389	00:00:29.237 265	EEC2	00F00302 H	02		扩展数据帧	8	00 00
🛨 🖂 2390	00:00:29.240 094	EEC1	0CF0041A H	1A		扩展数据帧	8	00 00
🗄 🖂 2391	00:00:29.246 016	HOURS	00FEE505 H	05		扩展数据帧	8	0D 0:
1 🖂 🖂 🗄	00:00:29.250 240	EEC2	00F00302 H	02		扩展数据帧	8	-)0 00
•		III						4
就绪							已连接 j1939.dbc	a

图 8.180 协议解析

当服务器未连接好时,点击菜单栏上面的"连接服务器",会弹出对应的连接框,如图 8.181 所示,点击"连接"即可。如果报文解析列表没有数据刷新,需要做以下检查:

- (1) CANScope 主程序网络共享服务器是否启用,密码是否一致(默认是空),然后 再次点击协议解析框中的"连接服务器";
- (2) 连接的 IP 地址是否正确,一般来说以网卡的 IP 地址,比如自动获取 IP 时,而 没有插网线,这时 IP 为 127.0.0.1
- (3) CANScope 主程序是否有报文接收,如果没有则不会有显示。

连	接服务器		23
	服务器信息		
	服务器IP地址:	192 . 168 . 1 . 103	
	服务器端口:	2000]
	连接密码 :		

图 8.181 连接服务器

若直接观察数据,可能会觉得眼花缭乱,所以此时可以使用界面中的"分类显示"功能,如图 8.182 所示。所有的报文按 ID 来进行分类刷新,而数据段中,有发生变化的数据标记红色,这样用户就可以很方便地获知正在动作的某个功能所对应的帧 ID,这为解析协议(特别是汽车协议)提供非常大的方便。

CAN 总线分析仪

🔏 协议解	祈 - CANFrameAnalyseList							
· 文件(F)	编辑(E) 视图(V) 帮助(H)							
i 🗅 🚅	🖬 % Þ 🛍 😂 🤋 📮		\frown					
🤹 连接服	🥵 🖾 加載DBC 🛛 🖬 暫停 🔺	(增量时间模式		加滾屏] 清除列表	协议类型 Default	*	
序号	时间	名称	中贞ID	SA	Dest	帧类型	数据长度	中 _{国双} 据
🗄 🖂 1	00:01:27.541 350	EEC1	0CF0041A H	1A		扩展数据帧	8	00 00 00 6C D6 00 00 00 H
🛨 🖂 2	00:01:27.511 561	EFL_P1	00FEEF03 H	03		扩展数据帧	8	00 00 00 27 00 00 00 00 H
🛨 🖂 3	00:01:27.572 589	HOURS	00FEE505 H	05		扩展数据帧	8	D2 09 00 00 00 00 00 00 H
± 🖂 4	00:01:27.529 857	IC1	00FEF606 H	06		扩展数据帧	8	00 00 27 00 00 00 00 00 H
🛨 🖂 5	00:01:27.576 636	EEC2	00F00302 H	02		扩展数据帧	8	00 00 30 00 00 00 00 00 H
🛨 🖂 6	00:01:27.485 001	ET1	00FEEE01 H	01		扩展数据帧	8	14 14 00 00 00 00 00 00 H
1 🖂 🔁	00:01:27.491 052	VEP1	00FEF704 H	04		扩展数据帧	8	00 00 00 00 00 00 D0 6B H
🛨 🖂 8	00:01:27.494 554	SHUTDN	00FEE407 H	07		扩展数据帧	8	00 00 00 00 00 00 00 00 H
				III				4

图 8.182 协议解析分类显示

解析协议技巧:分类显示后,假设我们想知道什么 ID 和哪个字节的数据代表汽车方向 盘位置信息,可以让司机左右动一下方向盘,然后观察帧数据变化(标红色),如果变化规 律和方向盘运动规律一致的,则可以断定这条报文中的这个数据代表方向盘位置。

2. 导入标准 DBC 文件解码 CAN 通讯

汽车电子用户都非常熟悉 DBC 文件,因为这个是任何汽车电子设备都必须具备的协议 文件,其描述了设备所发送接收报文的含义,比如发动机转速、油温、油压等。被汽车电子 用户俗称为"解码"。报文协议解析列表中也可以"加载 DBC"文件,可以轻松进行"解码" 工作,如图 8.183 所示,为加载标准的 J1939 协议(柴油机和电动车的标准协议)。

ಿ 协议解析	- CANFrameAnalys	eList				
; 文件(F) 翁	鳥輯(E) 视图(V) 帮助(H)				
i 🗅 🚅 🛢	X 🖻 🛍 🎒	? ∓				
🧶 连接服务	·器 题 加載DBC II	🔏 打开			x	
序号	时间	CANCustom	Analyse 🕨 Protocol 🛛 👻 🍫	搜索 Protocol	Q	
🛨 🖂 1	00:01:27.54					
1 🖂 🗄 🗄	00:01:27.51	组织 ▼ 新建文件夹				
🛨 🖂 3	00:01:27.57	🔸 m 🚌 📩 🦂	5称	修改日期	类型	
± 🖂 4	00:01:27.52		CANADA	2012/0/10 10:10		
	00:01:27.57		CANopen.dbc	2013/8/19 18:18	DBC X14	
	00:01:27.48			2013/8/19 18:18	DBC X14	
	00:01:27.49	圖 最近访问的位置 ■	英型: DBC 文件 大小: 1.82 MB			
	00.01.27.49		修改日期: 2013/8/19 18:18			
		🭃 库				
		🛃 视频				
		≦ 图片				
		🖹 文档				
		📄 迅雷下载				
		→ 音乐				
		• • •				
		文件名(N): j1939.dbc 👻	CAN Database Files(*.dbc) 🔻		
就绪	-			打开(0) 🔽 🔳		

图 8.183 加载 DBC 文件

CAN 总线分析仪

加载 DBC 文件之后,用户可以点开任意一个报文,其应用层解析一目了然,如图 8.184 所示, 0x00FEEE01 这个 ID 的报文中包含了发动机冷却液温度、发动机燃气温度、发动机 润滑油温等信息。

🐌 连接服务器	じ 加載DBC 🛛 🚻 智停 🛕t 増量时间	模式 💽 分类显示 ∫	🖞 自动滚屏 🗼 清	除列表 协议类型 CAN	4 -	
序号	时间	名称	h贞ID	帧类型	数据长度	帧数据
🕀 🖂 1	00:01:27.541 350	EEC1	0CF0041A H	扩展数据帧	8	00 00 00 <mark>6C</mark> D6 00 00 00 H
1 🖂 🗹 🗄	00:01:27.511 561	EFL_P1	00FEEF03 H	扩展数据帧	8	00 00 00 27 00 00 00 00 H
🛨 🖂 3	00:01:27.572 589	HOURS	00FEE505 H	扩展数据帧	8	D2 09 00 00 00 00 00 00 H
🗄 🖂 4	00:01:27.529 857	IC1	00FEF606 H	扩展数据帧	8	00 00 27 00 00 00 00 00 H
1 🖂 5	00:01:27.576.636	EEC2	00F00302 H	扩展数据帧	8	00 00 <mark>30</mark> 00 00 00 00 00 H
	00:01:27.485 001	ET1	00FEEE01 H	扩展数据帧	8	14 14 00 00 00 00 00 00 H
N 1	EngCoolantTemp	-20deg (
2	EngFuelTemp1	-20deg (
N 3	EngIntercoolerTemp	-40deg (
N 4	EngIntercoolerThermosta.	. 0%	6			
5	EngOilTemp1	-273deg (
N 6	EngTurboOilTemp	-273deg (
1 🖂 7	00:01:27.491 052	VEP1	00FEF704 H	扩展数据帧	8	00 00 00 00 00 00 D0 6B H
1 🖂	00:01:27.494 334	SHUTDN	00FEE407 H	扩展数据帧	8	00 00 00 00 <mark>00</mark> 00 00 00 H

图 8.184 DBC 解析应用层协议

用户如果需要保存分析结果,可以点击"暂停",然后再点击"保存"即可,如图 8.185 所示。

🚜 协议解析 - CANFrameAnalyseList	
; 文件(F) 编辑(E) 视图(V) 帮助(H)	
i 🗅 📂 🖬 👗 🛍 🕼 🥞 🤶 📮	
	義屏 🔀 清除列表 协议类型 CAN ▼

图 8.185 保存数据

- ◆ 增量时间模式:将时间显示改为增量时间;
- ◆ 自动滚屏: 当非分类显示方式时, 自动滚屏;
- ◆ 清除列表:将下面的列表框数据清除;
- ◆ 协议类型:默认的几个应用层解析协议。

DBC 文件也包含 CANopen 等工业协议, CANScope 软件自带。

8.4.2 自定义分析(DBC 导入与自定义)

当用户需要更加直观观测数据(仪表盘方式),或者需要自定义协议时,可以使用"高级"中的"自定义分析"功能,如图 8.186 所示。

图 8.186 自定义分析

用户在这个界面中,可以拖动左边的仪表盘、分度表、数字控件、文本控件等功能到面 板上面,然后绑定变量进行直观显示。或者拖动变量进行趋势分析。如图 8.187 所示。

CAN 总线分析仪

User Manual

数据面板1 - CANCustomAnalyse - 未命名文档*	_ D X
□□▼ 文件 控件 曲线 运行 视图	۵ 0
查看模式 分析模式	〕 空数据
查看模式 编 缩放曲线 工具	
工具箱 # × 表盘控件 ^ ● 整圆表盘 3/4圆表盘 ● 引/4圆表盘 ● ● 左上1/4圆表盘 ● ● 扇形表盘 ● ● 成形表盘 ● ● 素形次件 ● ● 垂雨次件 ●	米酸物設−CANopen.dbc # × ※ 約説マ・ 第・・ ア か NMTZeroMsg NMTZeroMsg NMTZeroRegister NManufacturerSpecific1 ManufacturerSpecific2 ManufacturerSpecific3 ManufacturerSpecific4 ManufacturerSpecific4 ManufacturerSpecific5 EMCY_002
■ 数字控件 MMTZeroMsg/Node_ID MTZeroMsg/Node_ID	 ~ ErrorCode ~ ErrorRegister ~ ManufacturerSpecific1 ~ ManufacturerSpecific2 * Message(s):255 Single(s):1145 ◎ 关联 ◎ 关联 ◎ 其性
连接成功	1.

图 8.187 自定义数据面板

具体的菜单与功能介绍,请点击"文件"菜单中的"帮助",可打开对应的用户手册。 如图 8.188 所示。

						控件面板1 - CANCustomAnalyse - 未命名文档*
	文件	控	:件	曲线	运行	视图
			E		X	
 新建 ▼	打开	保存	另存为	帮助	退出	
	文件			其	Ċ.	

图 8.188 自定义数据面板菜单介绍

1. DBC 导入分析

同样,这个表盘组态界面也可以导入 DBC 文件,通过控件直接绑定变量进行直观显示。 如图 8.189 所示,在工具箱中选择需要的控件,拖动到控件面板中,双击图形控件,或者右 击图形控件选择属性,则右边栏可以显示这个控件的参数,其中 Data 就是这个表盘指针数 值要绑定的变量,可以点击 Data 右边框中,即弹出一个"关联数据"框,选择加载协议(DBC 文件)或者选择已经预保存好的协议。

CAN 总线分析仪

User Manual

图 8.189 加载 DBC 文件到控件指针

假设加载了 j1939.dbc,则将 J1939 协议的所有映射都加载进来,这时我们需要将 ET1 的发动机冷却剂温度绑定,则在关联数据的搜索栏中输入"Engcoolanttemp"(不分大小写),

点击⁶进行搜索,然后双击目标进行绑定变量,则这个表盘的值就和实际物理量绑定。即可进行直观显示。如图 8.190 所示。

图 8.190 绑定实际物理量

如图 8.191 所示,即为绑定后的效果,属性栏中参数一般不需要修改:

- (1) Value 表示表盘初始值(这里是0°C);
- (2) MajorTickCount 表示主刻度分割数;
- (3) MaxValue 表示最大刻度值(这里是 210℃);
- (4) MinorTickCount 表示副刻度分割数;
- (5) MinValue 表示最小刻度值(这里是-40℃)。

 $\textcircled{\sc c}2022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

控件面板1	Ψ.	×	属	性	џ ×
			-	数据	
60 E LLO				Data	ET1/EngCoola
				Value	0
35			-	小数位数	
		Ξ		MajorTickCour	11
				MaxValue	210
15				MinorTickCour	4
				MinValue	-40
-40 210			-	杂项	
均件0		Ŧ		Caption	控件 <mark>0</mark>
	+	×		Style	Style_Default
		_			
		_			

图 8.191 加载发动机冷却水温度

如果需要看历史趋势变化,可以将右边栏切换成关联协议,然后找到 EngCoolantTemp 将其拖动到"数据面板 1"的左边栏,运行后即可有趋势变化曲线。如图 8.192 所示。

图 8.192 历史趋势分析

点击运行中的连接,如图 8.193 所示,即可关联运行。表针所指就是目前的发动机冷却 水温度,下面的数据面板的趋势图就是现实冷却水温度变化趋势。 CAN 总线分析仪

控件面板1		*	×
35			4 III >
数据面板1		Ŧ	x
ET1/EngCoolantTemp	32s 34s 	1	_

图 8.193 连接运行

分析小技巧:

(1) 通过控件菜单中的网格宽度可以调节控件大小,如图 8.194 所示。

		网格宽度 280	
控件布局 ▼	Θ	+	÷
		查看	A

图 8.194 调节控件大小

(2)点击数据面板中某个变量,然后点击曲线菜单中的分析模式,可以对这个变量的 历史趋势进行查看和测量分析,通过鼠标左键可以左右移动历史趋势图。如图 8.195 所示。

	数据回版1 - CANCustomAnalyse - 未命名文档*
□□□ 文件 控件 曲线 运行 视图	
▶ 查看模式 分析模式 水平放大 水平缩小 水平全屏 重直放大	 ▲ ● 直 金 府 ● 重 直 金 府 ● 重 直 金 府 ● 显示内部工具栏
查看模式 🔺 缩放曲线	▲ 工具 ▲
数据面板1	* x
T2 = 88.0253570786s	95. 95. 97.
ETI/EngCoolantTemp 0	
数据面板1	* X
T1 = 86.4278713643s T2 = 88.0253570786s	水平放大
T2-T1 = 1.59748571429s 81s 82s	水平缩小 84s 85s
200 -	水平全屏
ET1/EngCoolantTemp	放置标签 ▶ 更多标签
0-	移动到标签 > T1
	新增标签 T2
	删除标签
	删除所有标签

图 8.195 历史趋势分析

©2022 Guangzhou ZHIYUAN Electronics Co., Ltd.

用户在这个界面上可以进行各种测量和导出图片、清空数据之类操作,具体见本数据面板的 帮助。

2. 自定义协议分析

用户如果需要自定义相关协议,可以在关联协议中点击"新建协议",如图 8.196 所示。

协议			Щ.	х
办议 ▼	_			
新建协议				
加载协议				
CANopen.dbc	1			
j1939.dbc				
	-			
	协议 新建协议 加载协议 CANopen.dbc j1939.dbc	协议 か议▼ 新建协议 加载协议 CANopen.dbc j1939.dbc	协议 新建协议 加载协议 CANopen.dbc j1939.dbc	协议 単 が议▼ 新建协议 加载协议 CANopen.dbc j1939.dbc

图 8.196 新建协议

弹出"自定义协议编辑器",用户可以进行协议编辑,如图 8.197 所示。

🖳 自定义协议编辑器 — 未命	名文档.ccp*			
文件 编辑 帮助				
	🗈 👘 🕂 🖓 🙆			
11000000000000000000000000000000000000	序号	名称	状态数量	备注
1 状态值				

图 8.197 自定义协议编辑器

这个协议编辑器包含几个部分:

(1) 消息: 定义需要处理的报文信息。CANScope 接收到定义的报文, 然后才进行协议处理。 用户可以右击新建消息, 如图 8.198 所示。

🖳 自定义协议编辑器 — 未命	名文档	.ccp*						_ – ×
文件 编辑 帮助								
🗅 🚚 💾 🗳 🐰		🎽 🕂 · 🔺 🐧						
- 🔧 消息	序号	消息名称	帧类型	帧格式	数据长度	循环时间	标志段数量	信号数量
🗸 🎺 New_Message_0	1	New_Message.	标准帧	数据帧	8 Byte	0 ms	0	1
∿ New_Single_0								
→ 🔧 状态值								
New_Status_0		🛉 新建						
New_Status_1		↓ 前标						
		2 复制						
		111 粘贴						
		3 删除						
		ALL VIELAN						

图 8.198 自定义协议_消息

(2) 消息基本信息: 定义某条消息的帧类型与数据长度,并且定义了协议处理的循环时间, 默认是 0ms,即收到相关匹配的帧,就进行协议处理。如图 8.199 所示。

CAN 总线分析仪

🖳 自定义协议编辑器 — 未命	名文档.ccp*					
文件 编辑 帮助						
	D G	÷- 渊	?			
▼ ペジ 消息	基本信息	消息标志段	信号			
→ ペ 状态值 ● New Status 1	名称:	New_Messag	e_0			
New_Status_2	帧类型:	扩展帧	-	数据长度:	8 Byte	•
	帧格式:	数据帧	•	循环时间:	0 ms	

图 8.199 自定义协议_基本信息

(3) 消息标志段: 定义了某条消息帧是按 ID(或者数据段)中的哪几位来识别,来触发消息, 如图 8.200 所示,为定义了 J1939 协议中 ID 为 0xXXFEEEXX 的消息标志段,选择段关 联位置为帧 ID,段宽为 16 位(16Bit),段起始位序号 8Bit(靠左对齐,左为 0Bit),段 值为 0xFEEE。这样如果收到报文中的 8-23 位为 0xFEEE 时,就触发这个消息。

- 松 消息	基本信息 消息标志段 信号	
> New_Message_0 - ※ 状态値	· · · · · · · · · · · · · · · · · · ·	布局
New_Status_1		
New_Status_2	序号 段名称 天联位面 起始位序号 段宽 段值	字节
	· 新建标志役 · · · · · · · · · · · · · · · · · · ·	0 7 6 5 4 3 2 1 0
	标志段名称: New_FlagSugment_3	New_FlagSugment_213 13 11 10 9 8
	段关联位置: 帧ID ▼ 段宽: 16 Bit	New_FlagSugment_2 21 20 19 18 17 16
	段起始位序号: 8 Bit 段值: 0xFEEE	
		3 3 20 20 21 20 21 20 23 24
	·	4 39 38 37 36 35 34 33 32

图 8.200 自定义协议_消息标志段

如果用户要使用数据触发,则需要将段关联设置为帧数据,然后同样是设置匹配段,如 图 8.201 所示,为设置数据段 DATA2 和 DATA1 为 0xFE 和 0xEE。然后触发消息。

- ☆ 消息 基本(言息 消息标志段	信号												
♥ New_Message_0 ▼ ペ 状态値	Tul + .			増加	删除	布局								
於意思 Mew_Status_1 标志权	则表:	2.4 904 7.2 000	われた声日	¢ Dista	67.7#	位序	5 7	6	5	4	3	2	1	0
All New_Status_2	段省称 Navy FlanCure	天联位五	起始位序号	段苋	取旧	字节		-			-	_	-	-
1	New_Hagsug	hŬID	8 BIC	TO BIC	UXFEEE	0				4		2		
新建	称志校				×									
*	示志段名称: Net	w_FlagSugr	ment_4			1	New_Fl:	agSugme	ent_3					
Į.	段关联位置: 帧数	Ŋ据 -	· 段宽: 1	6 Bit		2	New_F1:	agSugne	int_3					
	段起始位序号: 8 B	it	段值: 0	XFEEE			31	30	29	28	27	26	25	24
						J J								
			确定	取消		4						34		
						5	47	46	45	44	43	42	41	40
						6	55	54	53	52	51	50	49	48
						7	63		61	60	59	58	57	

图 8.201 自定义协议_消息标志段 2

CAN 总线分析仪

同一个消息可以定义多个消息标志段,任意一条触发均可。

(4) 信号:当这个消息被触发后,报文中的哪些信息将被使用。如图 8.202 所示,按 J1939 协议的定义发动机冷却水温度,为 0xXXFEEEXX 的第一个字节,范围为-40℃~210℃。 所以我们可以新建信号。这样我们就得到了一个可以应用的变量——EngCoolantTemp。 变量的最终值=报文中原始数值×变换比例+变换偏移。变换偏移可以是负值。

信号名称:	EngCoolantTemp		
信号描述:	发动机冷却水温度		
起始位序号 :	0 Bit	信号位宽:	8 Bit
变换比例 :	1	变换偏移 :	-40
最小值:	-40	最大值:	210
状态值:	EngCoolant 🔻	单位:	Ĵ

▼ 🔧 消息	基本位	言息 消息标志段	信号												
Wew_Message_0				·····			布局								
	信号列	表:			皆加しし	删除	一位反								
- 🍄 状态值	宮号	信号名称	信号描述	起始位席号	信号宽度	变换		7	6	5	4	3	2	1	0
New_Status_1	1	EngCoolantTemp	发动机冷却水	0 Bit	8 Bit	1	77	R		- 5		2			0
New_Status_2			200000000000000000000000000000000000000			-	0	Luge oo.	Lancien	ip J					
							1	15	14	13	12	11	10	9	8
							2	23	22	21	20	19	18	17	16
							3			29	28	27	26	25	24
							4						34		32
							5	47	46	45	44	43	42	41	40
							6		54					49	48
	I					F	7	63	62	61	60			57	56

图 8.202 自定义协议_新建信号

当然用户可以在一个消息里面定义多个信号。

(5) 状态值: 预先设置好, 用于定义信号时, 进行状态描述。如图 8.203 所示。

🖳 自定义协议编辑器 — 未命	名文档.ccp*
文件 编辑 帮助	
🗅 🚚 💾 🗳 🐰	💼 💼 🕂 🗡 🚳
▼ 🍕 消息	基本信息 状态列表
◆ EngCoolantT ◆ 谷 状态值	名称: EngCoolantTempStu
EngCoolantTem	备注: 发动机冷却水温度状态
	· · · · · · · · · · · · · · · · · · ·

图 8.203 自定义协议_状态值设定

可以添加状态值列表,如图 8.204 所示,定义 0x0 为-40 摄氏度, 0x14 为-20 摄氏度。

CAN 总线分析仪

然后通过消息信号来绑定这个状态值,即信号如果等于某个状态值,则表示其对应的描述。

🖳 自定义协议编辑器	器 一 未命名文档	.ccp*		
文件 编辑 帮助				
	3 🗶 💼 1	ia 🕂 - 🎲		
→ 😵 消息 → 🥠 New_Mest	sage_0	信息 状态列表		
∼ EngCo	olantT 序 ^左	5 值	描述	
▼ 1 状态值	1	0x14	-40摄氏度 -20挕氏度	
	crem		- ~ 1881 × 1920	
自定义协议编辑器一未命名	文档.ccp*			
(件 编辑 帮助				
) 🚚 💾 🎦 🗶 🛙) 🖒 🕂	>		
1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2				
✓ ✓ New_Message_0	信号名称:	EngCoolantTemp)	
~ EngCoolantT - ペ 状态值	信号描述:	发动机冷却水温度	Ē.	
EngCoolantTem	起始位序号:	0 Bit	信号位宽:	8 Bit
				-
	变换比例:	1	受换偏移:	0
	最小值:	-40	最大值:	210
	状态值:	EngCoolant •	单位:	°C
		<none></none>	C+11	
		Engcoolant Temp	stu	

图 8.204 自定义协议_状态值设定 2

配置完毕后,点击保存,将这个协议保存起来。回到数据面板界面,选择协议,加载协议,就可以将自定义的协议导入,拖动信号到对应的控件,就可以用于数据显示与趋势分析。 如图 8.205 所示。

	数据面板1 - CANCustomAnalyse - 未命名文档*	
□□□ 文件 控件 曲线 运行	视图	A 😡
X 🗇 🛍 X 🤊 🤊	网格宽度 200	
剪切复制料贴删除回退。重做	控件布局 ── ● ●	
编辑	查看	
工具箱 # × 左件面板1		▼ × 关联协议-1208.ccp + ×
表盘控件 ^ ● 整圆表盘 3/4圆表盘 ● 并圆表盘 4 ▲ 并圆表盘 4 ▲ 方上1/4圆表盘 5 ● 扇形表盘 6	5 1 1 1 1 1 1 1 1 1 1 1 1 1	◆ 助议 - 學 - ♥ か <none> - ● New_Message_0 ~ EngCoolantTemp</none>
线性控件 ^ 数据面板1	1s 2s 3s	* X 4s

图 8.205 自定义协议导入与消息添加

验证完毕后,点击数据面板上面的文件,保存成工程文档,下次需要使用时直接打开加载工程文档即可。

小技巧:为了做出的控件比较美观,可以点击杂项的 Style,选择合适的表盘外观,如 **ZLG** ©2022 Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

User Manual

图 8.206 所示。

		数据面板1 - CANCustomAnalyse - 未命名文档*	
□ 文件 控件	曲线 运行	视图	☆ 🥝
資切 复制 北県 映除	う (回退 重做	四格宽度 200 控件布局 — → → →	
编辑		查看 4	
工具箱 4 ×	控件面板1	v	x 属性 # X
表盘控件 ^ ● 整圆表盘 3/4圆表盘 ● 当回表盘 #回表盘 ▲ 左上1/4圆表盘 ● 扇形表盘 线性 这件 ^ ● 小平控件 ● ● 重直空件 其他 这件 ^ ● 数字控件 □ 数字控件	数据面板1		◆ 数据 Data New_Message Value -20 ◆ 小数位数 MajorTickCour 11 MaxValue 210 MinorTickCour 4 • 余顷 Caption 拴件0 * 大yle 5 * Style 2 * Style 3 * Style 4 * * 次le 3 * Style 4 * * 次le 3 * Style 4 * * 次le 3 * * * * * * * * * * * * * * * * * * *

图 8.206 控件外观改变

如图 8.207 所示,为使用自定义协议做出来的 J1939 协议演示界面。

图 8.207 J1939 分析演示

如果需要显示状态值(状态描述),则需要将信号绑定到文本控件。如图 8.208 所示。 ©2022 Guangzhou ZHIYUAN Electronics Co., Ltd. CAN 总线分析仪

当信号值与状态值匹配,则显示状态描述。

工具箱	џх	_ 控件面板1	- x
表盘控件	^		Â
 · · ·		-20摄氏度	II.
线性控件	^	数据面板1	• X
■ 水平控件 ● 垂直控件			<u></u>
其他控件	^		

图 8.208 状态值显示

8.4.3 CANopen/J1939/DeviceNet/iCAN 协议分析

本功能为广州致远电子股份有限公司生产的 CANalyst-II 高层协议解析器的软件 CANPro 移植而来。后续 CANScope 版本将直接调用 CANPro 软件,使用共享数据的方式实 现数据传递分析。如图 8.209 所示,由于功能较多,故详细功能描述请见 CANPro 用户手册。

A CANProtocol - [-CAN-]		
¹¹ 文件(F) 操作(O) 视图(V) 窗口(W) 帮助(H)	Language	
📴 🔒 💊 🗏 启动 😕 🜭 🧊 😤 🥊		
显示模式:历史记录 ▼ CAN路数索引: 🔵 CA	11 😑 CAN2 😑 CAN3 CAN4 💂	
:■总线状态		_
-CAN- CANopen (script) +Default+ -CAN-	打开设备 🛛 🗙 🗙 🗙	
🗄 🔳 暫停 🕖 🍨 🗈 🔈 😡 😡 🧇 硬件时i		触发 😋 不显示发送帧
序号 传输方向 时间标识	版面实型。UAddeepe 系51号,U	数据
	CAN1	
	印久努TP 127.0.0.1	
	服务器端口 2000	
	连接密码 📃 显示	
	(密码最多32个字符)	
总线错误(CAN1)		
- 序号 总线错误描述 错误信息	确定取消	
搜索结果 总线错误(CAN1)		
	停止 发送帧数:0 接	妆帧数:0

图 8.209 CANPro 协议分析

8.4.4 帧比较分析

当用户在使用某些设备时,经常会遇到 CAN 应用协议不断更新的问题,比如辛辛苦苦 **ZLG** ©2022 Guangzhou ZHIYUAN Electronics Co., Ltd.
写好了操作程序,而厂家突然声明设备协议更新了,所有工作还要推到重来。所以CANScope内嵌了"帧比较"的功能,用于对比两个工程文件之间的报文差异。

用户先打开当前收集到的工程, 然后打开 CAN 报文菜单"工具"然后弹出"帧比较", 如图 8.210 所示。

时间显示 林 帧ID显示 - 数据显示 -	 取时间 十六进制 十六进制 显示 			は豊分析 1200 日 総約用率 こう 戦发发送 1200 日 工具	办议解析 FFT 共模干扰 即本编程 IDDE 边沿统计 专输延时 📑 导出	
帧比较 参考帧楼	如据				编辑数据	x
与参考中	歧数据进行比较	,列出不在其	中的帅贞		据 开始比较)
序号	帧类型	巾贞ID	帧数据		状态	-

图 8.210 帧比较

然后点击"选择",选中需要比较的工程文件,如图 8.211 所示为比较的数据。

TT CA	🏧 CAN报文 🗙 🐼 网络共享 📓 CAN波形 🖷 CAN眼图 🔍 CAN示波器														
B .	🗈 🖌 ¼ ¼ 满 🧮 🛤 自动量程 🔁 自动滚屏 🐨 清除过滤 📝 清除列表 🜗														
序号		时间		状态		方向		帧类型		数据长度		帧ID		帧数据	
在此众	上输入 、	7 在此处输入文字	Y	在此处输入	Y	在此处输入	Y	在此处输入	Y	在此处输入	7	在此处输入 🤉	7	在此处输入文字	Y
w	1	00:00:20.966 69	9	成功		发送		标准数据帧		8		111 H	0	5 76 01 00 00 00 0	
1	1	00:00:20.966 69	9	成功		接收		标准数据帧		8		111 H	C	5 76 01 00 00 00 0	
W	2	00:00:23.731 54	4	成功		发送		标准数据帧		8		111 H	C	5 76 01 00 00 00 0	
W	2	00:00:23.731 54	4	成功		接收		标准数据帧		8		111 H	C	5 76 01 00 00 00 0	
W	3	00:00:25.372 34	5	成功		发送		标准数据帧		8		111 H	C	5 76 01 00 00 00 0	
W	3	00:00:25.372 34	5	成功		接收		标准数据帧		8		111 H	C	5 76 01 00 00 00 0	
THE I	4	00:00:26.975 85	8	成功		发送		标准数据帧		8		111 H	C	5 76 01 00 00 00 0	
100	4	00:00:26.975 85	В	成功		接收		标准数据帧		8		111 H	C	5 76 01 00 00 00 0	
100	5	00:00:28.724 71	1	成功		发送		标准数据帧		8		111 H	C	5 76 01 00 00 00 0	
100	5	00:00:28.724 71	1	成功		接收		标准数据帧		8		111 H	C	5 76 01 00 00 00 0	

图 8.211 比较的数据

如图 8.212 所示,为被比较的数据,可见多出了 ID 为 222H 报文 2 条。

 $\textcircled{\sc conditions} 02022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

User Manual

-	🏧 CAN报文 🗙 🐼 网络共享 📓 CAN波形 🔳 CAN眼图 🔍 CAN示波器														
Pa	🖻 🖌 🎋 🐝 🙀 🧮 🔳 自动量程 🔁 自动滚屏 🔽 清除过滤 📝 清除列表 🜗														
序			时间		状态	方向		帧类型		数据长度	ę.	贞ID	帧数	据	
在	比处输入…	Y	在此处输入文字	Y	在此处输入	マ 在此处	輸入 🥱	存此处输入	. 7	在此处输入	7 7	至此处输入… 🦻	在此	处输入文字	7
m	1		00:00:05.219 708		成功			标准数据帧		8	11	L1 H	D5 7	5 01 00 00 00 0.	
1	2		00:00:06.280 683		成功	发送		标准数据帧		8	11	L1 H	D5 70	6 01 00 00 00 0.	
1	2		00:00:06.280 683		成功	接收		标准数据帧		8	11	L1 H	D5 7	5 01 00 00 00 0.	
1	3		00:00:06.868 168		成功	发送		标准数据帧		8	11	L1 H	D5 7	5 01 00 00 00 0.	
1	3		00:00:06.868 168		成功	接收		标准数据帧		8	11	L1 H	D5 7	5 01 00 00 00 0.	
1	4		00:00:11.183 983		成功	发送		标准数据帧		8	22	22 H	D5 7	5 01 00 00 00 0.	
1	4		00:00:11.183 983		成功	接收		标准数据帧		8	22	22 H	D5 7	5 01 00 00 00 0.	
1	5		00:00:16.036 015		成功	发送		标准数据帧		8	11	11Н	D5 7	5 01 00 00 00 0.	
W	5		00:00:16.036 015		成功	接收		标准数据帧		8	11		D5 7	5 01 00 00 00 0.	

图 8.212 被比较的数据

然后点击"开始比较"。如图 8.213 所示,列表框中显示出 ID 为 222H 的 2 条报文,用 户还可以双击这两条报文,定位到具体的帧位置,获取其出现的时间和逻辑关系。

比较					
参考帧数	[据 D:\产品	中心\CANSCO	PE\实际测试样本\帧比	选择 编辑数据	5
与参考帧	数据进行比较,	列出不在其中	中的帧 🔲 不	比较帧数据 开始比较	
序号	帧类型	巾贞ID	帧数据	状态	
4	标准数据帧	0x222	D5 76 01 00 00 00 00)00 成功	
4	标准数据帧	0x222	D5 76 01 00 00 00 00)00 成功	

图 8.213 比较结果

"帧比较"框中,还有2个选项:

- (1) 编辑数据:其实就是重播功能,可以将被比较的数据进行导入重播框并且进行播放;
- (2) 不比较帧数据:对于帧数据不进行比较,只对帧 ID 进行比较。

8.4.5 触发发送(节点和网络仿真)

触发发送主要用于应用层节点或者网络仿真,比如 CANScope 模拟一个节点或者一个 网络,对接收到的报文进行回复,如图 8.214 所示。点击 CAN 报文中工具的触发发送。

图 8.214 触发发送

先添加触发条件——收到某个特征的报文,然后添加这个触发条件下的发送数据(可添加多条),如图 8.215 所示,为收到 ID 为 0x00000001 的报文,就发送 ID 为 0x00000002 和

0x00000003的报文,如果需要修改,可以点击修改并保存或者删除。

蚊条件── ☑ 帖 坐 刑	标准数据帖	•		发送数据	标准数据帧	•	巾札ID 0000003	;
✓ 1∞天主	00000001			数据长度	8		数据 00 00 00 (00 00 00 00 00
 掩码	000007FF	(ALL)		重复次数	1			
数据	00 00 00 00 00 00 00 00	设置				1	和到数据列表	
掩码	00 00 00 00 00 00 00 00			发送数据列	し しょうしん しょうしょう しょうしょう しょうしん しょうしん しょうしん しょうしん しょうしん しょうしん しょうしん しょうしん しょう しょうしん しょうしょ しょう しょうしん しょうしん しょうしん しょうしょ しょうしょ しょうしょ しょうしょ しょう しょう しょう しょう			- united
	添加到条件列表	修改并保存	刪除	序号	帧类型	数据长度	巾贞ID	帧数据
发条件列: 1 <mark>帧</mark> 3	表 类型:标准数据帧;ID:0x00	0000001 & 0x0000	107FF;	2	标准数据帧	8	00000003	00 00 00 00 00 00

图 8.215 触发发送实例

注意:

- (1) 触发条件可以多条添加,每个触发条件都要单独添加发送数据的列表。
- (2) 帧 ID 和数据的掩码对应位为 1,则为"有关位",就是说接收到报文的这个位必须 和填入的帧 ID 或者数据匹配才能触发。如果掩码对应位为 0,则为"无关位",就 是说接收到报文的这个位无论是 0 还是 1 都可以被触发,
- (3) 发送数据可以设置重复发送的间隔时间,从触发后开始计时,如图 8.216 所示。

发送数排	Ξ.						
帧类	型	标准数据帧 ▼	巾贞ID	00000	003		
数据长	度	8	数据	00 00	00 00 00	00 00 00	
重复次	数	1					
			添加到	黝据列	よ しょうしん しょうしょう しょうしょう しょうしん しょうしん しょうしん しょうしん しょうしん しょうしん しょうしん しょうしん しょうしん しょう しょうしん しょうしょ しょうしん しょうしょ しょうしょ しょうしょ しょうしょ しょうしょ しょう しょうしょ しょう しょ しょう しょう	删除]
发送数挑	酠	表					
)	帧	数据	重复》	欠数	时间间]『鬲(ms)	
00002	00	00 00 00 00 00 00 00	1		10)	
00003	00	00 00 00 00 00 00 00	1		10		
•						•	

图 8.216 发送数据帧可以设置间隔时间

8.4.6 规则发送(节点和网络仿真)

当用户需要模拟节点比较复杂的发送时,比如一些数值计算和曲线变化。可以采用"规则发送"工具来发送报文。如图 8.217 所示。

图 8.217 规则发送

默认打开规则发送时,为简单模式,可以通过"转换为高级模式"切换到高级模式,如 图 8.218 所示,用户可以定义发送帧格式与变化数值的规律,添加到发送列表进行发送,可 以设置发送时间间隔与循环次数,但简单模式只能关联1个数值变化,即只有1个数据(Y) 绑定一段数据段数值。

3 规则发送【简单模式】- 未命名文档 *									2 2	3
文件(F) 工作模式(M)										
🗄 🗋 📲 🔜 🛹 转换为高级模式 🍙 锁定										
待发送帧基本信息	帧数据段7	跼局								-
帧类型: 标准数据帧 ▼	位序	7	6	5	4	3	2	1	0	
фдD: 0x 0	字节								0	
数据长度: 8Byte ▼		15	1.4	12	12		10		_	
初始帧数据: 0x 00 00 00 00 00 00 00 00	1	15	14	13	12	11	10	, , , , , , , , , , , , , , , , , , , ,		
※#ね マン・ウナ 毎回マーンジント	2	23	22	21	20	19	18	17	16	
	3	31	30	29	28	27	26	25	24	
	4	39	38	37	36	35	34	33	32	
其中变量X在 0 到 100 之间等间距取 20 个值	-	47	46	45	44	43	42	41	40	
数据(Y)填入位置	5	55	54	53	52	51	50	49	48	
起始位置: 0 Bit	6									Ξ
数据宽度: 8 Bit	7	63	62	61	60			57		
发送										
时间间隔: 100 ms 循环次数: 0	加入队							直接	发送	
	联邦码 关	ビ宮府	恋協力	_f				e+词	are	
1 标准数据帧 0x0 8 0x00 00 00 00 00 00 00 00 00 00 00 00 0	0 Bit	8 Bit	× (其中	、⊥、 ■X在O至	J 100 之	间等间距	取20	100 r	IS 1S	
۰ (ا									Þ	
	🗌 所有數	5型的中	J 同时发	送循	环次数	: 1		发	ιž	-
< (() (-	

图 8.218 规则发送_简单模式

如果切换到高级模式,则可以关联多个变化的数据,可以同步进行变化,如图 8.219 所示。

CAN 总线分析仪

NUUD发送【高级模式】	ARE HALF											
- 🛐 🖬 🔣 🛹	转换为简单模式	🔒 锁定										
5送规则												
Frame_0 ₹	示准数据帖 🛛	D:0x0 DLC:8	Data:00 00 00 00 00	0 00 00 00	时间	间隔:10	Oms	循环》	欠数:0			
B Data_0	起始位置:0 ≤ 0 X 甘	数据宽度:8 :由x在 0 到 100 之间	降间55町20个個									
Enclose Frame_1	示准数据帧 1	D:0x0 DLC:8	Data:00 00 00 00 00	0 00 00 00	时间	间隔:10	0ms	循环》	欠数:0			
Data_0	起始位置:0 s 0 X 其	数据宽度:8 :由X在 0 到 100 之间	等间跖取20个值									
⊡ ~ Data_1	起始位置:8	数据宽度:8										
Expres	s_0 X 其 記始位罟:16	中X在0到100之间 数据宽度:8	等间距取20个值									
Expres	s_0 X 其	中X在0到100之间]等间距取20个值									
] 所有类型的帧同时	发送 循环	次数: 1				増加	•	H	除	(发ì	送
■ 所有类型的帧同时 → 新有类型的帧同时 → 新有类型的 → 新有 → 新有 → 新有 → 新 → 新 → 新 → 新 → 新 → 新 → 新 → 新	送送 循环	欠数: 1				增加	•	001	除	(发	Ĕ
)所有类型的帧同时的 导发送帧基本信息 帧名称: Fram	送送 循环. ie_1	次数: 1 帧类型:	标准数据帧 ▼	位序	[增加	•		除	(发	Ĕ
 所有类型的帧同时 新有类型的帧同时 转发送帧基本信息 帧名称: Fram 帧ID: 0x 0 	发送 循环: ie_1	次数: 1 帧类型: 数据长度:	标准数据帧 ▼ 8 Byte ▼	位序 字节	7	增加 6	▼ 5	4	除 3	2	发i 1	送 o
 所有类型的帧同时 新有类型的帧同时 转发送帧基本信息 帧名称: Fran 帧ID: 0x 0 时间间隔: 100 	送送 循环 ie_1	次数: 1 帧类型: 数据长度: 循环次数:	标准数据帧 ▼ 8 Byte ▼ 0	位序 字节 0	7 Data_0	增加 6	▼ 5	4	除 3 3	2	发i 1	送 0
 所有类型的帧同时2 专发送帧基本信息 帧名称: Fram 帧D: 0x 时间间隔: 100 初始数据: 0x 000 	度送 循环. ie_1ms 0 00 00 00 00 00	次数: 1 	标准数据帧 ▼ 8 Byte ▼ 0	位序 字节 0 1	7 Data_0 Data_1	增加 6	▼ 5 13	4	除 3 3	2	发i 1	送 0
 所有类型的帧同时 新有类型的帧同时 教名称: Fran 帧2称: Fran 帧ID: 0x 0 时间间隔: 100 初始数据: 0x 00 0 数据列表: 	送 循环 e_1ms 0 00 00 00 00 00 00	次数: 1 帧类型: 数据长度: 循环次数: 00	标准数据帧 ▼ 8Byte ▼ 0	位序 字节 0 1 2	7 Data_0 Data_1 Data_2	增加 6	▼ 5 13 201	4	除 3 3	2	发i	送 0
 所有类型的帧同时 新有类型的帧同时 教名称: Fran 帧ID: 0x 0 时间间隔: 100 初始数据: 0x 00 0 数据列表: 序号 名称 	送 循环 e_1 ms 0 00 00 00 00 00	次数: 1 帧类型: 数据长度: 循环次数: 00 数据位宽	标准数据帧 ▼ 8 Byte ▼ 0	位序 字节 0 1 2 3	7 Data_0 Data_1 Data_2 Jata_2 31	增加 6 6 30	• 5 10 29	4	除 3 3 10 27	2 2 10 10 26	发i 1 25	送 0
 所有类型的帧同时式 参发送帧基本信息 帧名称: Fram 帧口: 0x 0 时间间隔: 100 初始数据: 0x 00 0 数据列表: 序号 名称 1 Data_0 	资送 循环。 me_1 ms 0 00 00 00 00 00 起始位置 0	次数: 1 帧类型: 数据长度: 循环次数: 00 数据位宽 8	标准数据帧 ▼ 8 Byte ▼ 0	位序 字节 0 1 2 3 4	7 Data_0 Data_1 Data_2 4 31 39	增加 6 6 30 30	5 5 13 29 37	4 4 28 36	除 3 3 27 27 35	2 2 10 18 26 34	发i 1 25 33	送 0
所有类型的帧同时 ・ ・ ・	b送 循环. ms 0 00 00 00 00 00 00 00 00 00 00 00 00	次数: 1	标准数据帧 ▼ 8 Byte ▼ 0	位序 字节 0 1 2 3 4	7 Data_0 Data_1 Data_1 Data_2 Jata_2 Jata_2 Jata_2	增加 6 30 38 45	▼ 5 3 37 45	4 4 28 36 44	除 3 3 3 3 3 3 3 3 3 5 4 3	2 2 10 16 26 34	发) 1 25 33 41	送 0
所有类型的帧同时: • 教名称: Fran • 林名称: Fran • 林口: 0x 0 时间间隔: 100 初始数据: 0x 00 0 数据列表: - 「序号」名称 1 1 Data_0 2 Data_1 3 Data_2	送 循环 He_1 ms 0 00 00 00 00 00 起始位置 0 8 16	次数: 1 	标:准数据帧 ▼ 8 Byte ▼ 0	位序 字节 0 1 2 3 4 5	7 Data_0 Data_1 Data_2 31 39 47	增加 8 6 30 30 38 46	 5 3 29 37 45 	4 4 28 36 44	除 3 3 4 4 4 3 5 4 3 5	2 2 10 10 26 34 42	发i 1 25 33 41	送 0
 所有类型的帧同时; 参发送帧基本信息 帧名称: Fran 帧ID: 0x 0 时间间隔: 100 初始数据: 0x 00 0 数据列表: 序号 名称 1 Data_0 2 Data_1 3 Data_2 	送 循环 e_1 0 00 00 00 00 00 0 8 16	次数: 1 帧类型: 数据长度: 循环次数: 00 数据位宽 8 8 8	「标:准数据帧 ▼ 8 Byte ▼ 0	位序 字节 0 1 2 3 4 5 6	7 Data_0 Data_1 Data_1 Data_2 4 39 47 55	增加 6 6 30 38 38 46 54	 5 5 3 37 45 53 	4 4 28 36 44 52	3 3	2 2 26 34 42 50	发) 1 25 33 41 49	送 0 4
所有类型的帧同时 特发送帧基本信息 帧名称: Fran 帧ID: 0x 0 时间间隔: 100 初始数据: 0x 00 0 数据列表: - 「序号 名称 1 1 Data_0 2 2 Data_1 3 3 Data_2 2	b送 循环 ms 0 00 00 00 00 00 起始位置 0 8 16	次数: 1 帧类型: 数据长度: 循环次数: 00 数据位宽 8 8 8	标:准数据帧 ▼ 8 Byte ▼ 0 1	位序 字节 0 1 2 3 4 5 6 7	7 Data_0 Data_1 Data_2 31 39 47 555 63	増加 6 8 3 3 3 3 4 6 5 4 6 2	5 5 29 37 45 53 61	4 4 28 36 44 52 60	3 3 27 35 43 51 59	2 2 2 2 6 3 4 4 2 6 3 4 4 2 5 5 8	发) 1 25 33 41 49 57	

图 8.219 规则发送_高级模式

规则发送的操作比较简单,均为中文说明,而且操作风格与前面功能大同小异,故本文 就不做展开叙述了,用户可以快速上手。

单帧中的循环次数是指本帧按时间间隔发送的次数,而整个规则发送的循环次数是指发送列表整体发送的循环次数。比如某个帧循环次数为4次,而规则发送的循环次数为2次,则总的发送次数为2批,各4次,从效果上看,就是发送了8次。

8.4.7 C 脚本编程(节点和网络仿真)

如果是更复杂的节点或者网络仿真规则,无法使用规则发送或者触发发送处理,则需要使用 C 脚本编程的方式,使用 C 语言编程来实现灵活的处理,如图 8.220 所示。

图 8.220 C 脚本编程

打开脚本编程的加载画面,点击浏览,找到 Simple.c 脚本模板,点击编辑脚本,如图 8.221 所示。默认启用脚本是勾选的,即表示如果点击编译并加载,脚本即运行,如果去掉 启用脚本的勾选,则停止运行脚本。注意,浏览路径中不能有中文,否则不能正常打开。

脚本编程	8
☑ 启用脚本	
C:\Program Files\zhiyuan\CANScope\Script\Example\simple	
编译并加载 编辑脚本	
	_

图 8.221 脚本编程

Simple.c 脚本模板将基本所有的回调函数都列出,用户可以基于这个模板进行修改,另存为自己的脚本,然后再通过脚本编程画面进行浏览,编译并加载运行,如图 8.222 所示。

J CLite - [simple.c]	
J File Edit Tools View Window Help	_ 8 ×
i D 🖆 🖬 🕼 ! 그 그 i & ங 🛍 👻 🔺 % % i 🚭 🔞 🖕	
simple.c J1939_demo.c	-
1 #include "CAN.h"	-
2 3 FRAME frame = {0};	
10 void OnTimer(UINT32 nID)	
12] if (nID==0)	
13 frame.type = kCANStdData; //定时器0发送标准数据帧	
14 else 15 frame.type = kCANExtData; //定时器1发送扩展数据帧	
16	
1/ Irame.dic = 8; 18 frame.id+:	
19 Send (&frame) ;	
20 - }	
	-
	•
Ready Ln 1, Col 1 CAP	NUM SCRL

图 8.222 脚本模板

CAN.h 头文件结构体定义说明:

```
enum CANFrameType{
```

kCANStdData=0,//标准数据帧 kCANStdRemote,//标准远程帧 kCANExtData,//扩展数据帧

kCANExtRemote,//扩展远程帧

```
};
```

//CAN 报文封装

typedef struct _FRAME{

UINT32 type;//参见 CANFrameType 定义

UINT32 id; //帧 ID

UINT32 dlc; //数据长度

UINT8 data[8]; //数据

}FRAME;

/*函数:TIMER_PROC

CAN 总线分析仪

User Manual

功能: 定时器回调函数 参数: nID-定时器编号*/ typedef void (*TIMER_PROC)(UINT32 nID);

/*函数名: SetTimer 功能:设置定时器,定时执行回调函数 参数:nID-定时器编号 参数:nElapse-执行周期(单位毫秒) 参数:proc-回调函数*/ void SetTimer(UINT32 nID,UINT32 nElapse,TIMER_PROC proc);

/*函数: KillTimer 功能:取消定时器 参数: nID-定时器编号*/ void KillTimer(UINT32 nID);

/*函数名: Send 功能: 发送 CAN 报文 参数: frame-CAN 报文 返回值: TRUE 表示成功*/ BOOL Send(FRAME *frame); #endif

Simple.c 脚本模板说明:

#include "CAN.h"
FRAMEframe = {0};//定义 CAN 帧
/*函数:OnTimer
功能: 定时器回调函数
参数:nID-定时器编号*/
void OnTimer(UINT32 nID){
 if(nID==0)
 frame.type = kCANStdData; //定时器 0 发送标准数据帧
 else
 frame.type = kCANExtData; //定时器 1 发送扩展数据帧
frame.dlc = 8;
frame.idt ++;
Send(&frame);
}

/*函数:OnInit

功能: 模块初始化函数, 加载时由系统调用*/

void OnInit(){

SetTimer(0,10,OnTimer);//设置定时器 0,执行周期为 10ms,回调函数 OnTimer SetTimer(1,100,OnTimer);//设置定时器 1,执行周期为 100ms,回调函数 OnTimer

}

/*函数: OnInit **
として**

CAN 总线分析仪

}

}

}

User Manual

功能:模块终止函数,卸载时由系统调用*/ void OnFinal(){ KillTimer(0); //取消定时器 0 KillTimer(1); //取消定时器 1 /*函数:OnStart 功能:开始采集时,由系统调用*/ void OnStart(){ /*函数:OnStop 功能:停止采集时,由系统调用*/ void OnStop(){ /*函数:OnReceive 功能:接收报文时,由系统调用*/ void OnReceive(FRAME *frame){ //接收的报文重新发送出去 Send(frame); }

脚本采用标准 C 语言编程,使用者若有 C 语言基础,编写难度不大,故本文不做过多 叙述,用户可以自行查看脚本注释。

9. CANTester 自动化测试软件

CANTester 是一款主要针对 CAN 节点进行测试的自动化集成软件,可自动完成 CAN 节点总线性能测试、收发器性能测试和总线异常测试。如图 9.1 所示,点击测试菜单中的 CAN 测试仪,即可打开 CANTester 软件,CANTester 软件界面如图 9.2 所示。在自动测试完 成之后,可将测试的数据保存为工程文件或导出报表,以便下次分析使用。

图 9.1CAN 测试仪

图 9.2CANTester 自动化测试软件

9.1 快速入门

9.1.1 硬件连接

启动 CANTester 软件后,可根据 CANScope 的硬件配置,选择不同的脚本,如图 9.3 所示,即 pro版本+port 头、pro版本+stress 板、std版本+port 头。若根据已有设备选择了 pro版本+stress 板脚本,外部环境接线需注意 DUT 的 CAN-GND 需和 stress 板的绿色端子的 GND 连接,如图 9.4 所示。

图 9.3CANTester 软件对应硬件配置选择

图 9.4CANTester 测试硬件连接

9.1.2 软件操作

1. 软件在线检测

打开软件后, 需先检查软件是否在线, 点开软件右上角的"关于"即可查看。

Z£G°					→ (3) 关于 (2) 帮助	- 🗆 🗙
		*	ĉ	ñ		

图 9.5 系统自检

2. 被测设备参数配置

为了使 CANTester 软件能正确的采集到报文, 需先配置被测设备的参数, 假设被测设备的波特率为 500Kbps, 自带的终端电阻为 60Ω, 报文间隔为 100ms, 可按照图 9.6 所示进行设置。

ZG°								
	系统设置							
🔒 自动测试	系统设置	1.厂家信息	生产厂家	广州致远电子和	有限公司	产品序列码	4710123456789	
			产品型号	ChargerV1.01				
系统设置	被测设备	2.参数信息	波特率	500	Kbps	DUT报文类型	标准帧	
			终端电阻类型	60Ω		测试报文ID	0x123	
	报表导出		报文时间周期	500				

图 9.6 被测设备参数配置

CAN 总线分析仪

勾选需要测试的测试项,如图 9.7 所示。

Z⊈⊊°				(i) 关于 ? 帮助 = □ ×
44		A		
 合动测试 登 系统设置 	 測试项 ✓ CANTester自动化测试 ✓ 1 总线性能测试 ✓ 11.1 CAN总线电压测试 ✓ 1.1.1 CANH量性输出电压 ✓ 1.1.2 CANH慢性输出电压 	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	 事件列表 属性视图 事出用原列正配 判定最大值(V) 判定最小值(V) 大変視图 	4.5 2.75 目 奋 祭
	 ✓ 1.1.3 CAN 显在第30电压 ✓ 1.1.4 CANL隐性输出电压 ✓ 1.1.5 CANDIFF湿性输出电压 ✓ 1.1.6 CANDIFF隐性输出电压 	 ○ ① 等待測试 ○ ② 等待測试 ○ ③ 等待測试 ○ ③ 等待測试 ○ ③ 等待测试 	序号时间	方向 英型 ID DLC
				>
		等待测试		

图 9.7 测试项选择

4. 测试项参考范围设置

对所勾选的测试项,进行属性视图中的参考范围及相关参数设置,如图 9.8 所示。关于 属性视图中的参数描述,可参考表 9.6。

ZEG			(1) 关于 (?) 帮助 - □ ×
		A	
		测试结果	* 事件列表 属性视图
	▼ (✓ CANTester自动化测试		
			1)定息の(国(1) 10
	▼ 🔄 1.1 CAN思线电压测试		判定审小值(V) 2.73
茶號 反直	✓ 1.1.1 CANH显性输出电压	🗠 🕜 等待测试	

图 9.8 参考范围设置

5. 自动化测试开启

以上操作完成之后,点击图 9.9 按钮,可开启自动化测试。

图 9.9 开启测试按钮

6. 工程文件保存

点击图 9.10 中框选的按钮,可将测试后的数据保存为工程文件,方便再次在软件上打

开分析。可直接通过 按钮打开保存的工程文件。

CAN 总线分析仪

图 9.10 保存工程文件

7. 测试报表导出

点击图 9.11 中框选的按钮,可将测试后的数据导出为.doc 格式的文档。在报表导出前, 请确认电脑已安装有 office 软件。

图 9.11 测试报表导出

CAN 总线分析仪

9.2 软件介绍

CANTester 软件界面如图 9.12 所示,包括通用的主菜单及标题区、测试项显示区、事件列表、属性视图、CAN 报文区、进度条等,功能简介如表 9.1 所列。整个界面涵盖了 CANTester 软件所有的基本操作。

图 9.12CANTester 软件界面

序号	名称	说明
(1)	标题栏	辅助信息查看
(2)	主菜单栏	开始/停止、打开、保存工程文件、导出报表、保 存配置及加载配置的菜单控制区
(3)	事件列表/属性视图显示区	整个测试过程中所发生的各个事件及消息,以及 各测试项参考范围设置
(4)	CAN 报文视图区	整个测试过程中发送和接收的 CAN 帧
(5)	进度条	所有测试项的测试进度
(6)	测试项显示区	测试项显示区域
(7)	系统设置	设置被测设备以及提供软件相关功能
(8)	自动测试	根据选择好的测试项,进行自动化测试

9.2.1 标题栏

标题栏分为五部分,每部分的介绍如表 9.2 所列:

表 9.2 标题栏介绍

图标	说明	
ZLS°	公司 Logo 显示	
(i) XT	软件版本显示及各个硬件配置的版本相关信息	

 $\textcircled{\sc c}2022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

续上表

图标	说明
? 帮助	点击此按钮打开帮助文件。
- = ×	最小化、最大化及关闭窗口按钮

9.2.2 主菜单栏

主菜单栏中涵盖了平常使用概率较高的功能键,可通过主菜单完成启动测试和保存导出 等基本操作。具体功能说明如表 9.3 所列:

图标	名称	说明
	开始/停止按钮	开始/停止运行测试项
	打开工程	打开.test 格式的工程文件
	保存工程	将当前工程所包含的数据以二进制的形式保存为.test 格式文档
	导出报表	将测试结果导出到 doc 文件中
杓	保存配置	保存被测设备的参数信息及测试项对应的属性参数
A	加载配置	加载被测设备的参数信息及测试项对应的属性参数

表 9.3 常用菜单介绍

注: 1、报表导出只支持 Microsoft Office 软件, 若使用其它软件, 如 WPS, 将会导致报表导出出错。

9.2.3 事件列表

事件消息显示区主要是对在整个测试过程中发生的一些消息进行显示,这些消息可以帮助测试人员查看某个测试项在测试过程中所发生的一些事件或者相关参数等调试数据。 具体如图 9.13 所示,具体按钮功能说明如表 9.4 所列,标签说明如表 9.5 所列。

CAN 总线分析仪

事件列表	属性视图		日前
序号	时间	信息	L L L L L L L L L L L L L L L L L L L
0	07:43:10.9540	日志:已加载配置	
1	07:43:10.9590	😅 日志:切换物理层测试脚本完成	
2	07:43:11.1640	😳 日志:设置CANScope的波特率为:500K	
3	07:43:11.2230	😳 日志:设置RHL阻值为-1	
4	07:43:15.8430	😅 日志:已加裁配置	
5	07:43:15.8440	😳 日志:切换到CANTester系统自检脚本完成	
6	07:43:19.4120	😳 消息:启动测试	
7	07:43:19.4120	😳 消息:启动测试项>>> CANScope在线检测	
8	07:43:19.6120	😳 事件:测试项正确>>> CANScope在线检测	
9	07:43:19.6310	😳 消息:测试结束	
10	07:43:24.0520	😳 日志:已加载配置	
11	07:43:24.0560	😳 日志:切换物理层测试脚本完成	
12	07:43:24.2610	😳 日志:设置CANScope的波特率为:500K	

图 9.13 事件列表

表 9.4 按钮功能说明

图标 名称		说明	
Ħ	导出按钮	将整个事件消息区所包含的所有内容导出到一个 csv 文档中	
ŧ	清空按钮	将整个事件消息区内容清空	

表 9.5 标签说明

名称	说明
序号	每个消息的序号
时间	消息发生的时间
信息	消息的具体内容

9.2.4 属性视图

属性视图主要显示测试项的参数设置信息,如图 9.14 所示。当测试项后面的 ^Ŷ 图标 不为灰色时,对应有属性视图,即,可设置相关的参数,点击相关测试项后,再点开属性视 图即可进行参数设置。

Ę	事件列表	属性视图		
⊡	CAN-H显	世输出电压翻	置	
	显性最大的	直(V)		4.5
	显性最小	直(V)		2.75

图 9.14 属性视图

1. 属性视图中的参数描述

CAN 总线分析仪

属性视图中的参数描述如表 9.6 所列,当测试数据在参考范围之内时,测试结果为测试 通过,反之,测试不通过。

测试项目	参数名称	参数默认值	参数描述	
	判定最大值	4.5V		
CANH 显性输出电压	判定最小值	2.75V		
	判定最大值	3V		
CANH 隐性潮击电压	判定最小值	2V		
	判定最大值	2.25V		
CANL 並性制出电压	判定最小值	0.5V	CAN 信号显隐性输出电压参考范围的	
	判定最大值	3V	取入/取小值设重,用于测试数据与之 比较,得到测试结果	
CANL 隐性输出电压	判定最小值	2V		
CANDIFF 显性输出	判定最大值	3V		
电压	判定最小值	1.5V		
CANDIFF 隐性输出	判定最大值	0.05V		
电压	判定最小值	-0.5V		
	边沿区间	10%~90%	信号上升/下降沿测量区间选择,可选择的区间范围有: 10%~90%、 15%~85%、20%~80%	
过行视跃	边沿最小值	15ns	信号上升/下降时间参考范围的最大/ 最小值设置,用于测试数据与之比较,	
	边沿最大值	300ns	得到测试结果	
总线延时测试(被动 测试) 总线延时测试(主动 测试)	最大延时	20%	总线传输延时是指 DUT 应答位的延时,最大延时设置,用于测试数据与 之比较,得到测试结果	
	突发统计周期	50ms	用户需设置的突发总线利用率的统计 时间窗口	
总线报文分析	平均总线利用率最大值	30%	根据突发统计周期作为每个时间窗 口,统计每个窗口内接收到报文的总 线利用率后求平均,即为平均总线利 用率,平均总线利用率最大值,用于 测试数据与之比较,得到测试结果	

表 9.6 参数描述

CAN 总线分析仪

续上表

测试项目	测试项目 参数名称 参数		参数描述		
总线报文分析	突发总线利用率最大值	70%	根据突发统计周期作为每个时间窗 口,统计每个窗口内接收到报文的总 线利用率后取最大值,即为突发总线 利用率,突发总线利用率最大值,用 于测试数据与之比较,得到测试结果		
	总线错误率最大值	0%	侦测一定时间内的报文错误帧比率, 总线错误率最大值,用于测试数据与 之比较,得到测试结果		
住日对初州	信号对称性上限值	2.9V	信号对称性参考范围的最大/最小值设 置,用于测试数据与之比较,得到测		
信亏对你性	信号对称性下限值	2.1V	试结果。 信号对称性值,即 V _{sym} =(V _{CANH} +V _{CANL})/2		
位时间精度	最大允许误差	0.4%	位 时 间 精 度 = (1/btr1-1/btr2)/(1/btr2) ×100%, btr 为 CANScope 侦测到的 DUT 波特率, btr2 为 DUT 标称波特率,最大允许设 差即参考的最大位时间偏差值,用于 测试数据与之比较,得到测试结果		
	采样点基准值	87.5%	DUT 程序中设置的采样点值		
采样点	采样点误差范围	±3%	测试的采样点结果需在设置的采样点 误差范围内,用于测试数据与之比较, 得到测试结果		
位宽容忍度测试	误差值	±3%	DUT 能适应的波特率参考范围,用于 测试数据与之比较,得到测试结果		
	压力测试时间	30s	CANScope 按照设置的总线利用率发送的报文时间		
报文压力测试	总线利用率	70%	将压力测试时间内每一帧报文的传输 时间累加起来 除于 总时间,即可得 到总线上的利用率		
	报文错误率	0.1%	在设置的总线利用率时间内,错误帧 报文占总报文的百分比,用于测试数 据与之比较,得到测试结果		
<u>-</u>	终端电阻最小值(步进 2.5Ω)	30Ω	在保证总线正常通信的状态下, CANScope 配置的最小/最大终端电阻		
终端电阻压力测试	终端电阻最大值(步进 2.5Ω)	160Ω	值,用于测试数据与之比较,得到测 试结果		

CAN 总线分析仪

1 +	
450	- ±
<u>- 11</u>	

测试项目	参数名称	参数默认值	参数描述
容抗压力测试	终端容抗最大值(步进 250pF)	1000pF	在保证总线正常通信的状态下, CANScope 配置的最大终端电容值,用 于测试数据与之比较,得到测试结果
	故障持续时间	5000ms	该参数是指故障开始到结束的时间
总线异常测试(需点 击对应的单个测试 项,属性视图才可看 到相关参数)	恢复参考时间	2000ms	故障结束后, DUT 恢复到正常通信的 参考时间,用于测试数据与之比较, 得到测试结果
	I 应的単个测试 属性视图才可看 关参数) DUT 恢复最大等待时 间		故障结束后,软件允许 DUT 恢复到正 常通信时的最大等待时间,当 DUT 的 故障恢复时间超过该参数时,无法得 到测试结果。可根据 DUT 特性修改该 参数,以便得到测试结果

9.2.5 报文视图

报文视图包括整个测试过程接收和发送的 CAN 报文,如图 9.15 所示,各个按钮的含义 如表 9.7 所列,标签说明如表 9.8 所列。

	报文视图									Ē	(46) 980
	序号	时间		方向	类型	ID	DLC	数据			
	109684	00:06:57.0359	-	接收	标准数据帧	0x200	3	5A 4C 47			
	109685	00:06:57.0568	-	接收	标准数据帧	0x200		5A 4C 47			
	109686	00:06:57.1105	-	接收	标准数据帧	0x200	3	5A 4C 47			
	109687	00:06:57.1728	-	接收	标准数据帧	0x200		5A 4C 47			
	109688	00:06:57.2250	-	接收	标准数据帧	0x200	3	5A 4C 47			
	109689	00:06:57.2879	-	接收	标准数据帧	0x200		5A 4C 47			
	109690	00:06:57.3088	-	接收	标准数据帧	0x200	3	5A 4C 47			
	109691	00:06:57.3625	-	接收	标准数据帧	0x200		5A 4C 47			
	109692	00:06:57.4247	-	接收	标准数据帧	0x200	3	5A 4C 47			
K	109693	00:06:57.4770	-	接收	标准数据帧	0x200	3	5A 4C 47			F

图 9.15 报文视图

表 9.7 按钮说明

图标	名称	说明
Ë	导出按钮	将整个协议区所包含的所有内容导出到一个 csv 文档中
Ē	清空按钮	将协议区内容全部清空
	数据切换	帧信息视图切换到帧数据视图(该功能暂时无)

 $@2022 \ {\rm Guangzhou} \ {\rm ZHIYUAN} \ {\rm Electronics} \ {\rm Co., Ltd.} \\$

CAN 总线分析仪

表 9.8 标签说明

标签名称	说明
序号	报文的序号
时间	报文的接收时间
方向	CANScope 接收或发送
类型	显示当前数据帧类型,例如标准数据帧、标准远程帧等。当这里显示红字时, 代表该帧错误,会显示该帧的具体错误
ID	报文的 ID
DLC	报文数据段的长度(字节)
数据	报文具体的数据(十六进制)

9.2.6 进度条

进度条区如图 9.16 所示,将显示当前测试项的测试进度。

25%

图 9.16 进度条

9.2.7 测试项显示区

通过配置测试项界面,可以勾选哪些测试项将要被测试,并且最终的测试结果也将在这个界面上显示。测试项显示区如图 9.17 所示,主要由测试项、测试结果、实测数据、参考范围组成。对各部分的功能介绍详见表 9.9 所列。

 CANTester自动化频试 ○ 1 总线性能测试 ○ 1 总线性能测试 ○ CANH墨性输出电压 ○ CANH墨性输出电压 ○ CANH墨性输出电压 ○ CANH墨性输出电压 ○ CANL墨性输出电压 ○ 公ANH學性输出电压 ○ 公ANH學性輸出电压 ○ 公ANH學性輸出电压 ○ 公ANH學性輸出电压 ○ 公ANH學性輸出电压 ○ 公 別試過过 2.48~2.54V 2.00-3.00V ○ CANL墨性輸出电压 ○ 公 別試過过 2.48~2.55V 2.00-3.00V ○ CANL醫性輸出电压 ○ 公 別試過过 2.48~2.55V 2.00-3.00V ○ CANL醫性輸出电压 ○ 公 別試過过 2.48~2.55V 2.00-3.00V ○ CANL醫性輸出电压 ○ 公 別試過过 2.48~2.55V 2.00-3.00V ○ CANDIF 副性輸出电压 ○ 公 別試過过 0.04~0.03V 0.50~0.50V ○ CANDIF 副性輸出电压 ○ 公 別試過过 0.00% ○ 公 (2.47)10 ○ 別試過过 ○ 0.00% ○ 公 (2.47)10 ○ 別試過过 ○ 2.8.81ns ○ 1.1.3 总线超过 ○ 2.0.00% ○ 公 総 (2.0.00% ○ 公 (2.4 S (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4	测试项	l	测试结果	测试数据/测试点	参考范围	
1 お焼性解明試 1.1 CAN焙焼用圧焼は ① 別は急せ 3.27~3.44V 2.75~4.50V CANH爆性輸出电圧 ① 別は急せ 3.27~3.44V 2.75~4.50V CANH爆性輸出电圧 ① 別は急せ 2.48~2.54V 2.00~3.00V CANL農性輸出电圧 ① 別は急せ 2.48~2.55V 2.00~3.00V CANL農性輸出电圧 ① 別は急せ 1.46~1.62V 0.50~2.25V CANL農性輸出电圧 ① 別は急せ 1.44~1.62V 0.50~2.00V CANL評価 ① 別は急せ 1.46~1.85V 1.50~3.00V CANDIFF隠性輸出电圧 ① 別は急せ 1.003V -0.50~0.50V 2.454203Wit ① 別は通道 2.00~30V -0.50~0.50V 2.645430割は ① 別は通道 2.8.81ns 15ns~300ns 2.645430割は ①	- 🔽 CANTester自动化测试					
▼ 1.1 CANBBBE (1) ① 測試通过 3.27~3.44V 2.75~4.50V ※ CANH最性輸出电圧 ① 測試通过 2.48~2.54V 2.00~3.00V ※ CANL最性輸出电圧 ② 測試通过 2.48~2.54V 2.00~3.00V ※ CANL最性輸出电圧 ③ 別試通过 1.46~1.62V 0.50~2.25V ※ CANL最性輸出电圧 ③ 別試通过 1.76~1.85V 1.50~3.00V ※ CANL時性輸出电圧 ④ 別試通过 -0.04~0.03V -0.50~0.50V ※ CANDIFFB性輸出电圧 ④ 別試通过 -0.04~0.03V -0.50~0.50V ※ CANDIFFB性輸出电圧 ④ 別試通过 2.881ns 15ns~300ns ※ 位 別試通过 2.881ns 15ns~300ns - ※ 位 別試通过 10.00% ≤20.00% - - ※ 白 法経経費力制試 ● 別試通过 10.00% ≤20.00% - - 2.00% - - 2.00% - - 2.00% - - 2.00% - - 2.00% - - 2.00% - 2.00% -	▼ 1 总线性能测试					
 ◇ CANH最佳編曲电圧 ◇ 別試通过 3.27-3.44V 2.75-4.50V ◇ CANH陽性編曲电圧 ◇ 別試通过 2.48-2.54V 2.00-3.00V ◇ CANL最佳編曲电圧 ◇ 別試通过 1.46-1.62V 0.50-2.25V ◇ CANL最佳編曲电圧 ◇ 別試通过 2.48-2.55V 2.00-3.00V ◇ CANL時佳編曲电圧 ◇ 別試通过 2.48-2.55V 2.00-3.00V ◇ CANDIFE型性編出电圧 ◇ 別試通过 ○ ANDIFE型性編出电圧 ◇ 別試通过 ○ 0.04-0.03V ○.50-0.50V ◇ CANDIFE型性編出电圧 ◇ 別試通过 ○ 0.04-0.03V ○.50-0.50V ◇ ○ ○.50V ◇ ○ ○ ○ ○ ○.50V ◇ ○ ○ ○ ○ ○ ○.50V ◇ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	▼ 1.1 CAN总线电压测试					
◇ CANH操性編出电圧 ◇ 別試通过 2.48~2.54V 2.00~3.00V ◇ CANL最佳編出电圧 ◇ 別試通过 1.46~1.62V 0.50~2.25V ◇ CANL操性編出电圧 ◇ 別試通过 2.48~2.55V 2.00~3.00V ◇ CANL時佳編出电圧 ◇ 別試通过 2.48~2.55V 2.00~3.00V ◇ CANDIFF型性編出电圧 ◇ ⑦ 別試通过 1.76~1.85V 1.50~3.00V ◇ CANDIFF型性編出电圧 ◇ ⑦ 別試通过 0.04~0.03V 0.50~0.50V ◇ CANDIFF型性編出电圧 ◇ ⑦ 別試通过 30.69ns 15ns~300ns ◇ 位上升时间 ◇ 別試通过 28.81ns 15ns~300ns ◇ 位下降时间 ◇ 別試通过 10.00% ≤20.00% ◇ 台試超対測試(転力方式) ◇ ⑦ 測試通过 10.00% ≤20.00% ◇ 台域超対測試(転力方式) ◇ ⑦ 測試通过 0.29% ≤30.00% ✓ 1.4 台域超文分析 ✓ 測試通过 0.29% ≤30.00% ✓ 学校台域利用率測试 ◇ 別試通过 0.00%(0/941) ≤0.00% ◇ 自動試通过 0.00%(0/941) ≤0.00% シ (1.6 位力目構在 ◇ 別試通过 1.975µs 2.00µst0.40% ✓ 2.4 校裁器性能解試 ◇ ② 測試通过 1.975µs 2.00µst0.40% ✓ (1.6 位力目構在 ◇ ③ 減減通过 ○.00% ◎ 1.50.50% ≤0.10% ✓ 2.4 校裁器性能観	✓ CANH显性输出电压		测试通过	3.27~3.44V	2.75~4.50V	
◇ CANL是性輸出电圧 ◇ 別試過过 1.46~1.62V 0.50~2.25V ◇ CANL操性輸出电圧 ◇ 別試通过 2.48~2.55V 2.00~3.00V ◇ CANDIF提性輸出电圧 ◇ 別試通过 1.76~1.85V 1.50~3.00V ◇ CANDIF提性輸出电圧 ◇ 別試通过 1.76~1.85V 1.50~3.00V ◇ CANDIF提性輸出电圧 ◇ 別試通过 30.69ns 1.50~3.00N ◇ 位力時間 ◇ 別試通过 30.69ns 15ns~300ns ◇ 位下時时間 ◇ 別試通过 2.8.81ns 15ns~300ns ◇ 位下時时間 ◇ 別試通过 2.8.00% ≤ 20.00% ◇ 台話超対別試试成成功方式 ◇ 別試通过 1.0.00% ≤ 20.00% ◇ 台話超対別試成成功方式 ◇ 別試通过 0.00% ≤ 20.00% ◇ 台話超対別試成 ◇ 別試通过 0.00% ≤ 20.00% ◇ 台話超対別試(法功方式) ◇ ⑦ 別試通过 0.00% ◇ 日4.4.5.8.1.2.3.0.7.5.1 ◇ ⑦ 別試通过 0.00% ◇ 「1.4.5.8.1.2.3.0.7.5.1 ◇ 別試通过 0.00%(0/941) ≤ 0.00% ◇ 台話電力 ◇ 別試通过 0.00%(0/941) ≤ 0.00% ◇ 白き目示約 ◇ ⑦ 1.975µs 2.00µst0.40% ◇ 1.1.6.6.211単確<	✓ CANH隐性输出电压		测试通过	2.48~2.54V	2.00~3.00V	
◇ CANL操性編出电圧 ◇ 別記通过 2.48~2.55V 2.00~3.00V ◇ CANDIFF量性編出电圧 ◇ 別記通过 1.76~1.85V 1.50~3.00V ◇ CANDIFF量性編出电圧 ◇ 別記通过 -0.04~0.03V -0.50~0.50V ● CANDIFF動性編出电圧 ◇ 別記通过 -0.04~0.03V -0.50~0.50V ● (1.2 边沿間试 ○ 別記通过 30.69ns 15ns~300ns ● 公 月前間 ◇ 別記通过 28.81ns 15ns~300ns ● 公 月前間 ◇ 別記通过 28.81ns 15ns~300ns ● 公 月前間 ◇ 別記通过 10.00% ≤20.00% ● 公 月前間 ◇ 別記通过 6.00% ≤20.00% ● 公 月前回試 ◇ 別記通过 6.00% ≤20.00% ● 公 目気認通覚 0.00% ≤20.00% ≤ ● 公 目気認通过 0.00% ≤20.00% ≤ ● 公 日本総計 ◇ 別記通过 0.00% ≤20.00% ● 1.4 总統取分析 ○ 別記通过 0.29% ≤30.00% ● 公 見気認通过 0.29% ≤30.00% ≤ 30.00% ● 公 見気認通道 ○ 別記通过 0.00%(0/941) ≤0.00% ● 公 見読述通过 0.00%(0/941) ≤0.00% ≤ 2.00µste.040% ● 1.5 信号対称性 ○ ⑦ 測試通过 0.00%(0/941	✓ CANL显性输出电压		测试通过	1.46~1.62V	0.50~2.25V	
◇ CANDIFF量性輸出电圧 ◇ 例 測试過过 1.76~1.85V 1.50~3.00V ◇ CANDIFF簡性輸出电圧 ◇ 例 測试通过 -0.04~0.03V -0.50~0.50V ✓ 1.2 边沿測试 ● 測试通过 -0.04~0.03V -0.50~0.50V ✓ 1.2 边沿測试 ● ※ 測试通过 30.69ns 15ns~300ns ● 位上升时间 ● ※ 測试通过 28.81ns 15ns~300ns ● 位下降时间 ● ※ 測试通过 28.81ns 15ns~300ns ● ● ※ 測试通过 28.81ns 15ns~300ns ● ● ※ ※ 1.00% ≤20.00% ● ● ● ※ ※ 30.00% ≤20.00% ●	✓ CANL隐性输出电压		测试通过	2.48~2.55V	2.00~3.00V	
◇ CANDIFF操性输出电压 ◇ ⑦ 測试通过 -0.04~0.03V -0.50~0.50V ◆ 1.2 边沿潮试 ● ① 別试通过 30.69ns 15ns~300ns ◇ 位上井时间 ◇ ⑦ 測试通过 28.81ns 15ns~300ns ◇ 位下降时间 ◇ ⑦ 測试通过 28.81ns 15ns~300ns ● ○ 1.3 总线延时测试(动方式) ◇ ⑦ 测试通过 6.00% ≤20.00% ② 总线延时测试(动方式) ◇ ⑦ 测试通过 6.00% ≤20.00% ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	✓ CANDIFF显性输出电压		测试通过	1.76~1.85V	1.50~3.00V	
・ 1.2 边沿測试 ・ 位上升时间 小 測试通过 30.69ns 15ns~300ns ・ 位下降时间 小 測试通过 28.81ns 15ns~300ns ・ ・ 1.3 总线延时测试(被方式) 小 測试通过 28.81ns 15ns~300ns ・ ・ 1.3 总线延时测试(被方式) 小 別试通过 10.00% ≤20.00% ・ シ シ焼活通过 0.00% ≤20.00% ・ シ シ焼活通过 0.00% ≤20.00% ・ ・ 別试通过 0.56% ≤70.00% ・ ・ 別試通过 0.56% ≤70.00% ・ ・ 別試通过 0.00%(0/941) ≤0.00% ・ シ 別試通过 0.00%(0/941) ≤0.00% ・ シ 別試通过 0.00%(0/941) ≤0.00% ・ 1.5 信号対称性 ・ 別試通过 2.00,25:0.0% ・ 1.5 信号対称性 ・ 別試通过 1.975,ps 2.00,ps:0.0% ・ 1.6 位时間構成 ・ 別試通过 -3.00%~3.00% 星大客忍足の受害 2.00,ps:0.0% ・ 2.1 柴花点 <	✓ CANDIFF隐性输出电压		测试通过	-0.04~0.03V	-0.50~0.50V	
◇ 位上升时间 別試通过 30.69ns 15ns~300ns ◇ 位下降时间 別試通过 28.81ns 15ns~300ns ◇ 山下降时间 別試通过 28.81ns 15ns~300ns ◇ 1.3 总线延时別試(総功方式) ⑦ 別試通过 10.00% ≤20.00% ◇ 約試通过 10.00% ≤20.00% ≤20.00% ◇ 約試通过 0.01% ≤20.00% ≤20.00% ◇ 約試通过 0.02% ≤30.00% ≤20.00% ◇ 打ち 急緩起交分析 ○ 別試通过 0.29% ≤30.00% ◇ 突发总线利用率測試 ○ 別試通过 0.56% ≤70.00% ◇ 突发总线利用率測試 ○ 別試通过 0.00%(0/941) ≤0.00% ◇ 約試通过 0.00%(0/941) ≤0.00% ≤0.00% ◇ 1.6 信司动格性 ○ 別試通过 2.27-2.57V 2.10~2.90V ◇ 1.6 信司动格世 ○ 別試通过 1.975µs 2.00µs±0.40% ◇ 1.6 信司动格世 ○ 別試通过 3.00%~3.00% €大容忍望進功 ◇ 2.1 柴芹点 ○ 別試通过 -3.00%~3.00% €大容忍望進功 ◇ 2.1 柴芹点 ○ 別試通过 -3.00%~3.00% €大容忍望進功 ◇ 2.2 位安忍愛認識試 ○ 別試通过 <td>▼ 🔽 1.2 边沿测试</td> <td></td> <td></td> <td></td> <td></td> <td></td>	▼ 🔽 1.2 边沿测试					
◇ 位下降时间 ◇ 測試通过 28.81ns 15ns~300ns ◆ 1.3 总线疑时测试 ◇ 小試通过 10.00% ≤20.00% ◇ 总线延时测试(核功方式) ◇ 小試通过 10.00% ≤20.00% ◇ 总线超时测试(生动方式) ◇ 小試通过 6.00% ≤20.00% ✓ 1.4 总线报文分析 ※ ※ ✓ 計算总長相用牽測試 ◇ 測試通过 0.29% ≤30.00% ✓ 学发总线利用牽測試 ◇ 測試通过 0.56% ≤70.00% ✓ 学发总线利用牽測試 ◇ 測試通过 0.00%(0/941) ≤0.00% ✓ 約該通过 0.00%(0/941) ≤0.00% ✓ 1.5 信号对称性 ◇ 測試通过 1.9075µs 2.00µs±0.40% ✓ 1.6 位計開構度 ◇ 測試通过 1.9975µs 2.00µs±0.40% ✓ 2 化发器性能範試 ✓ 測試通过 3.00%~3.00% 星大容忍愛感到試 ✓ 2.1 采样点 ◇ 測試通过 -3.00%~3.00% 星大容忍愛感的了=3.00% ✓ 2.1 采样点 ◇ 測試通过 -3.00%~3.00% 星大容忍愛感的了=3.00% ✓ 2.2 位安容忍愛願試 ◇ 測試通过 -3.00%~3.00% 星大容忍愛感的子音。3.00% ✓ 2.3 报文圧力測试 ◇ 測試通过 0.00%(70%总线负… ≤0.10% ✓ 2.4 终端电阻圧力測試 ◇ 小測試通过 1000pf ≥1000pf	✓ 位上升时间		测试通过	30.69ns	15ns~300ns	
 ✓ 1.3 总线超时测试(被动方式) ☆ 測试通过 10.00% 全线超时测试(注动方式) ☆ 測试通过 6.00% 全20.00% ✓ 急线超时测试(注动方式) ☆ 測试通过 6.00% ≤20.00% ✓ 1.4 总线程文分析 ✓ 平均总线利用率测试 ◇ 测试通过 0.29% ≤30.00% ✓ 学均总线利用率测试 ◇ 测试通过 0.56% ≤70.00% ✓ 总线错误率测试 ◇ 测试通过 0.00%(0/941) ≤0.00% ✓ 1.5 信号对称性 ◇ 测试通过 0.27~2.57V 2.10~2.90V ✓ 1.6 位計時構度 ◇ 测试通过 1.9975µs 2.00µs±0.40% ✓ 2 收发器性能测试 ✓ 测试通过 2.1 采样点 ◇ 测试通过 -3.00%~3.00% 星大容忍度绝对值≥3% ✓ 2.1 投入压力测试 ◇ 测试通过 1000pf ≥1000pF 	✓ 位下降时间		测试通过	28.81ns	15ns~300ns	
◇ 身気通知 ① 別気通过 10.00% 全20.00% ◇ お鉄延町別試(主动方式) ② 別気通过 6.00% ≤20.00% ✓ 14 总线板文分析 0.29% ≤30.00% ✓ 平均总线利用率測试 ② 別気通过 0.29% ≤30.00% ✓ 学均总线利用率測试 ② 別気通过 0.56% ≤70.00% ✓ 党気は観見率測試 ② 別気通过 0.00%(0/941) ≤0.00% ✓ 党気は観見率測試 ② 別気透通过 2.00%(0/941) ≤0.00% ✓ 1.5 信号対系性 ③ 別気透通过 2.27~2.57V 2.10~2.90V ✓ 1.6 位対同構成 ④ 別気透通过 1.975µs 2.00µs±0.40% ✓ 2 收发器性能動試 1.975µs 2.00µs±0.40% ✓ 2 以安器性能動試 ● 別気透通过 1.00µs±0.40% ✓ 2 以安器性能動試 1.975µs 2.00µs±0.40% ✓ 2 以安器性能動試 1.975µs 2.00µs±0.40% ✓ 2.1 気気 ※ 2.00k=3:0.0% そのま3.00% ✓ 2.1 気気 ※ 割気気通立 -3.00%~3.00% 長大容忍足違の対価 2.30% <0.10%	▼ 🔽 1.3 总线延时测试					
◇ 身紙通过 6.00% 全20.00% ● 14 总线程文分析 -	✓ 总线延时测试(被动方式)		测试通过	10.00%	≤20.00%	
 ◆ 1.4 总线报文分析 ※ 平均总线利用率测试 ※ 測试通过 0.29% ≤ 30.00% ※ 契波总线利用率测试 ※ 測试通过 0.56% 至70.00% ※ 数点线相关率测试 ※ 測试通过 0.00%(0/941) ≤ 0.00% ✓ 1.5 信号对称性 ※ 測试通过 2.27~2.57V 2.10~2.90V ✓ 1.6 位却间精度 ※ 別試通过 1.9975µs 2.00µs±0.40% ✓ 2 收发器性能跳就 ✓ 2 收发器性能跳就 ✓ 2 收发器性能跳就 ✓ 2 収发器性能跳就 ✓ 2 収发器性能跳就 ✓ 2 収发器 ※ ※ 割試通过 ● 1.97%からの後、 ✓ 2.1 采祥点 ※ ※ 割試通过 ● 3.00%~3.00% 単大容忍度绝对值 2.3% ✓ 2.3 报文圧力測试 ※ ※ 割試通过 ● 2.4 终端电阻圧力測试 ※ ※ 割試通 ● 2.4 终端电阻压力测试 ※ ※ 割試通 ● 2.4 终端电阻压力测试 ● ※ 測试通过 ● 2.1000pF ● 1000pF ● 1000pF ● 1000pF ● 1000pF ● 1000pF ● ※ ● ※<td>📝 总线延时测试(主动方式)</td><td></td><td>测试通过</td><td>6.00%</td><td>≤20.00%</td><td></td>	📝 总线延时测试(主动方式)		测试通过	6.00%	≤20.00%	
平均均线利用率調試 ○ 測试通过 0.29% ≤30.00% 突发均线利用率調試 ○ 測试通过 0.56% ≤70.00% 別試通过 0.00%(0/941) ≤0.00% 別試通过 0.00%(0/941) ≤0.00% 別試通过 2.27~2.57V 2.10~2.90V 別試通过 1.9975µs 2.00µs±0.40% 2 次发器性能測試 2.00µs±0.40% 2 次安器性能測試 2.00µs±0.40% 2 次安器性能測試 2.00µs±0.40% 2 北安器電機構成	▼ 🔽 1.4 总线报文分析					
	✓ 平均总线利用率测试		测试通过	0.29%	≤30.00%	
○ 判認通过 0.00%(0/941) ≤0.00% ● 1.5 信号对称性 ○ 判認通过 2.27~2.57V 2.10~2.90V ● 1.6 信号对称性 ○ 別認通过 1.9975µs 2.00µs±0.40% ● 2 枚发器性能刺転 ○ 別就通过 1.9975µs 2.00µs±0.40% ● 2 枚发器性能刺転 ○ 別就通过 1.9075µs 2.00µs±0.40% ● 2 2 枚发器性能刺転 ○ 別就通过 1.9075µs 2.00µs±0.40% ● 2.1 採样点 ○ 別就通过 0.00%~3.00% 星大容忍愛意の利益 2.85 ● 2.2 位安容忍意意知試 ○ 別就通过 ●.00%~3.00% 星大容忍意意的打查:3% ● 2.3 报文圧力測試 ○ 別試通过 聞び用本:30.00公目max:160 ≤0.10% ● 2.4 终端电阻圧力測試 ○ 別試通过 1000pf ≥1000pf	✓ 突发总线利用率测试		测试通过	0.56%	≤70.00%	
● 1.5 信号対称性 ① 測试通过 2.27~2.57V 2.10~2.90V ● 1.6 位时间精度 ② 測试通过 1.9975µs 2.00µs±0.40% ● 2 收发器性能測試 ● ② 測试理止 DUT不允许发送报文 (87.50±3.00)% ● 2.2 位気容忍度測試 ○ 測试通过 -3.00%~3.00% 最大容忍度絶対値≥3% ● 2.3 报文压力測试 ○ 測试通过 +3.00%(70%总线负 ≤0.10% ● 2.4 终端电阻压力测试 ○ 测试通过 DUT首带终端电阻无法测试min≤30.000Ω目max≥160 ● 2.5 容抗压力测试 ○ 测试通过 1000pF ≥1000pF	✓ 总线错误率测试		测试通过	0.00%(0/941)	≤0.00%	
○1.6 位时间精度 ① 別試通过 1.9975µs 2.00µs±0.40% ▼ 2 收发器性能测试 ○ 別試中止 DUT不允许发送报文 (87.50±3.00)% ● 2.2 位宽容忍度测试 ○ 別試声止 DUT不允许发送报文 (87.50±3.00)% ● 2.2 位宽容忍度测试 ○ 別試通过 -3.00%~3.00% 最大容忍度絶対値≥3% ● 2.3 报文压力测试 ○ 別試通过 昔現率0.0%(70%总线负 ≤0.10% ● 2.4 终端电阻压力测试 ○ 取消膨就 DUT目带终端电阻无法测试min≤30.00Ω且max≥160 ● 2.5 容抗压力测试 ○ 测试通过 1000pF ≥1000pF	✓ 1.5 信号对称性		测试通过	2.27~2.57V	2.10~2.90V	
 ✓ 2 收发器性能测试 2.1 采样点 ② 2.1 采样点 ○ ③ 測试声止 DUT不允许发送报文 (87.50±3.00)% ② 2.2 位宽客忍度测试 ○ ③ 測试通过 -3.00%~3.00% 最大容忍度绝对值≥3% ② 2.3 报文压力测试 ○ ③ 測试通过 世後端电阻压力测试 ○ ③ 取消膨就 DUT自带终端电阻无法测试min≤30.000Ω且max≥160 ② 2.5 客机压力测试 ○ ④ 测试通过 1000pF ≥1000pF 	✓ 1.6 位时间精度		测试通过	1.9975µs	2.00µs±0.40%	
 ○ 公 測试中止 ○ UT不允许发送报文 (87.50±3.00)% ○ 2.2 位宽容忍度測试 ○ 公 測试通过 -3.00%~3.00% 最大容忍度绝对值≥3% ○ 2.3 报文压力测试 ○ 公 測试通过 増減率0.0%(70%总线负 ≤0.10% ○ 2.4 终端电阻压力测试 ○ 公 取消源域 DUT自带终端电阻无法测试min≤30.00Ω且max≥160 ○ 公 測试通过 1000pF ≥1000pF >1000pF >1000pF >1000pF >1000pF >1000pF >1000pF >1000pF	▼ 🔽 2 收发器性能测试					
	✓ 2.1 采样点			DUT不允许发送报文	(87.50±3.00)%	
 	✓ 2.2 位宽容忍度测试		测试通过	-3.00%~3.00%	最大容忍度绝对值≥3%	
2.4 终端电阻压力测试 <th< th=""></th<>	2.3 报文压力测试		测试通过	错误率:0.0%(70%总线负	≤0.10%	
✓ 2.5 容抗压力测试	✓ 2.4 终端电阻压力测试			DUT自带终端电阻,无法测试	min≤30.00Ω <u>用</u> max≥160	
	✓ 2.5 容抗压力测试		测试通过	1000pF	≥1000pF	
	▼ 3 总线异常测试					
▼ 🔽 3.1 总线短路测试	▼ 🛃 3.1 总线短路测试					
✓ CAN_H与CAN_L短路测试 < ⑦ 测试通过 < 2ms(干扰5000ms,DUT ≤ 2000ms	✓ CAN_H与CAN_L短路测试		测试通过	< 2ms(干扰5000ms,DUT	≤2000ms	
✓ CAN_H接电源短路测试 ◇ ② 测试通过 < 2ms(干扰5000ms,DUT ≤2000ms	✓ CAN_H接电源短路测试		测试通过	< 2ms(干扰5000ms,DUT	≤2000ms	
✓ CAN_L接电源短路测试 ○ 公 测试通过 90.85ms ≤2000ms	✓ CAN_L接电源短路测试		测试通过	90.85ms	≤2000ms	
✓ CAN_H接地线短路测试 ☆ 別試通过 < 2ms(干扰5000ms,DUT ≤2000ms	CAN_H接地线短路测试		测试通过	< 2ms(干扰5000ms,DUT	≤2000ms	
✓ CAN_L接地线短路测试 < 2ms(干扰5000ms,DUT ≤2000ms	CAN_L接地线短路测试		测试通过	< 2ms(干扰5000ms,DUT	≤2000ms	
✓ CAN_H与CAN_L同接电源短路测试	✓ CAN_H与CAN_L同接电源短路测试		测试通过	< 2ms(干扰5000ms,DUT	≤2000ms	

图 9.17 测量项显示区

User Manual

表 9.9 测量项显示说明

名称	说明
测试项	显示本软件所支持的所有测试项
测试结果	显示某个测试项通过、不通过、中止测试、等待测试或取消测试
实测数据	显示测量项对应数值的实际值
参考范围	显示测量项对应数值的有效参考范围

1. 测试项选择说明

每个测试项在选择的时候处于2种不同的状态说明如表9.10所列,当测量项被选中时,测试结果为等待测试,某些测试项还存在一个作为参考的标准范围。

表 9.10 测试项被选择状态

图标	功能	备注
	未选中	支持的测试项但未选中,不测试
	选中	将要被测试的测试项

2. 测试结果说明

每个测试项在测试结束后可能处于的几种状态,如表 9.11 所列:

表 9.11 结果说明

测试结果	备注
测试通过	本测试项测试通过
测试不通过	本测试项测试不通过
测试中止	本测试项中止测试
等待测试	本测试项还在等待测试
取消测试	本测试项无意义

9.2.8 系统设置

1. 系统设置

测量模式和错误策略的具体说明见表 9.12、表 9.13 及表 9.14 所列。

ZEG					
••	系统设置				
🔒 自动测试	系统设置	测量模式	重测选择项	缓存路径	C:\Users\meng
		错误策略	继续测试		
🄅 系统设置	被测设备				
	报表导出				

图 9.18 系统设置

CAN 总线分析仪

表 9.12 设置项目说明

参数	意义
测量模式	选择测试系统在测试完成之后又启动测试后该进行怎样的操作,测量 模式说明如表 9.13 所列
错误策略	选择测试系统在某个测试项遇到测试失败时,测试系统将进行的操作,错误策略说明如表 9.14 所列
缓存路径	缓存路径选择,用于存放测试中生成的过程数据文件

表 9.13 测量模式说明

测量模式	说明		
重测选择项	再次测试时,保留未被选择的已测测试项的测试结果,清空选择的 测试项结果,并再次测试		
重新测试	再次测试时,清空所有已测结果,重新测试		
继续测试	再次测试时,保留已测测试项结果,继续测试未测试过的测试项		
重测错误项	再次测试时,保留已测测试项结果,重新测试上次测试未通过的测试项和未测试过的测试项		

表 9.14 错误策略说明

错误策略	说明
继续测试	某个测试项失败后继续测试可测试的测试项
错误停止	某个测试项测试失败后直接停止测试

2. 被测设备

被测设备信息设置如图 9.19 所示,分为厂家信息和参数信息,其介绍如下:

- 厂家信息:设置被测设备的生产厂家、产品型号和产品序列码;
- 参数信息:参数具体说明如表 9.15 所列。

Z S							(i)
	系统设置							
🔒 自动测试	系统设置		生产厂家	广州致远电子有	限公司	产品序列码	4710123456789	
	JOILE		产品型号	ChargerV1.01				
🔅 系统设置	被测设备	2.参数信息	波特率	500	Kbps	DUT报文类型	标准帧	-
			终端电阻类型	60Ω		测试报文ID	0x123	
	报表导出		报文时间周期	500				

图 9.19 被测设备信息设置

CAN 总线分析仪

表 9.15 被测设备参数信息

参数信息	说明		
波特率	设置被测设备的波特率		
终端电阻类型	该设置项是要求输入被测设备自带的终端电阻值,然后软件根据被 测设备的终端电阻值,配置总线最终通信的电阻为 60Ω		
报文时间周期	设置 DUT 设备的报文发送时间间隔,即发送一帧开始到下一帧报文 开始的时间,这里,我们需要设置所有周期内的最大的一个周期		
DUT 报文类型	设置 DUT 的报文类型		
测试报文 ID	设置 CANScope 发送的报文 ID 大小		

3. 报表导出

报表导出信息用于设置输出到报表首页的相关信息,具体内容如图 9.20 所示:

图 9.20 报表导出设置

9.3 测试项解释

CANTester 软件中的每个测试项解释如表 9.16 所列:

表	9.16	测试项解释
---	------	-------

	总线性能测试				
总线电压、测试	CANH 显性输出电压	显性状态时,CANH 对地电压的顶 部值	基本测试要求:		
	CANH 隐性输出电压	隐性状态时,CANH 对地电压的底 部值	 测试时 DUT 持续发送 报文; 		
	CANL 显性输出电压	显性状态时,CANL 对地电压的底 部值	▶ 终端电阻为 60Ω。 注:对于第 2 点要求,只要		
	CANL 隐性输出电压	隐性状态时,CANL 对地电压的顶 部值	在系统设置正确输入 DUT 的终端电阻阻值即可,		
	CANDIFF 显性输出电压	显性状态时,CANDIFF 对地电压 的项部值	CANTester 会根据 DUT 的 终端电阻参数使 CANScope 和 DUT 的通信		
	CANDIFF 隐性输出电压	隐性状态时,CANDIFF 对地电压 的底部值	链路的终端电阻为60Ω		
ZLG		©2022 Guangzhou Z	HIYUAN Electronics Co., Ltd.		

CAN 总线分析仪

续上表

	总线性能测试				
边沿测试	位上升时间	在 DUT 总线上添加最小电容和最 大电容负载,测试其位上升边沿时 间,判断其边沿时间在不同极限电 容负载条件下,是否符合标准规 定。 在 DUT 总线上添加最小电容和最	基本测试要求: > 测试时 DUT 持续发送 报文; > 被测总线仅一个节点。 注:根据一些主流车企测试 标准,在测试过程中需要增 加不同的电容负载,设备不 支持该功能,测试时如果需 要请依据该标准增加相应 电容到测试环境中。		
	位下降时间	大电容负载,测试其位下降边沿时间,判断其边沿时间在不同极限电容负载条件下,是否符合标准规定。			
总线延时	总线延时测试(被动方 式)	CANScope 接收 DUT 发送的报文, 测试 DUT 发送的 CAN 报文到 CANScope 的传输延时时间,该测 试项针对多节点测试。	基本测试要求: 测试时 DUT 持续发送报文且总线上存在 节点能够对其应答。 		
测试 	总线延时测试(主动方 式)	CANScope 主动向 DUT 发送报文, 测试 CANScope 发送报文到 DUT 的最大延时时间,该测试针对单节 点测试。	基本测试要求: DUT 能够对总线进行 应答。		
	平均总线利用率测试	测试 DUT 或 CAN 总线传输的 CAN 报文的平均流量是否超标, 以避免总线堵塞情况。	基本测试要求:		
总线报文 分析	突发总线利用率测试	测试 DUT 或 CAN 总线在 CAN 报 文突发情况下,报文流量是否超 标,以避免总线堵塞情况。	 被测对象为一个完整 总线系统 被测总线具有主动发 		
	总线错误率测试	总线错误率测试是测试 DUT 或 CAN 总线传输报文的过程中, CAN 错误报文占全部报文的比 例,以评测目前总线的运行情况	送报文的能力,且处于 持续发送报文的状态		
信号对称性	Ė	测试 DUT 或 CAN 总线的共模电压 的波动范围,以评测目前总线的受 到共模干扰的程度	基本测试要求: > 测试时 DUT 持续发		
位时间精度	Ē	测试 DUT 报文位时间是否符合标 准规定。	送报文		

 $\textcircled{\sc conditions} 02022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

续上表

收发器性能测试				
采样点	测试 DUT 的采样点适应范围,以 评测其采样点设置的正确性和兼 容性	基本测试要求: > DUT 能够对其它节点 发送的报文进行应 答,在检测错误时能 够产生错误帧。		
位宽容忍度	测试 DUT 的位宽度的适应范围 (或者是波特率适应范围),以评 测其位宽度(波特率)的兼容性。	基本测试要求: > DUT 能够对其它节点 发送的报文进行应 答,在检测错误时能 够产生错误帧。		
报文压力测试	测试 DUT 或 CAN 总线在大量报文 冲击的情况下,是否会发生错误 (过载帧也是一种错误),检验 DUT 或 CAN 总线接收处理数据的 能力	基本测试要求: > 测试时 DUT 持续发 送报文 > DUT 能够对其它节点 发送的报文进行应 答,在检测错误时能 够产生错误帧。		
终端电阻压力测试	测试 DUT 或 CAN 总线的终端电阻 适应范围	 基本测试要求: 测试时 DUT 持续发送报文 DUT 没有自带的终端 电阻 		
容抗压力测试	测试 DUT 或 CAN 总线在总线容抗 增加时的极限通讯能力。	基本测试要求: 测试时 DUT 持续发送报文 		

 $\textcircled{\sc c}2022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

续上表

		总线异常测试	
总线短路 测试	CANH 与 CANL 短路测 试	测试 DUT 或 CAN 总线,在总线短路一段时间后,DUT 或 CAN 总线 自我恢复能力。	
	CANH 接电源短路测试	测试 DUT 或 CAN 总线在 CANH 对电源短路后的恢复能力。	
	CANL 接电源短路测试	测试 DUT 或 CAN 总线在 CANL 对电源短路后的恢复能力。	基本测试要求:
	CANH 接地线短路测试	测试 DUT 或 CAN 总线在 CANH 对地短路后的恢复能力。	
	CANL 接地线短路测试	测试 DUT 或 CAN 总线在 CANL 对地短路后的恢复能力。	➢ DUT 能够对具它节点 发送的报文进行应 答,在检测错误时能
	CANH 与 CANL 同接电 源短路测试	测试 DUT 或 CAN 总线在 CANH 和 CANL 同时对电源短路后的恢 复能力。	够产生错误帧。▶ 当通信链路的短路故障去除后 DUT 能够
	CANH 与 CANL 同接地 线短路测试	测试 DUT 或 CAN 总线在 CANH 和 CANL 同时对地短路后的恢复 能力。	自行恢复通信
	CANH 接电源、CANL 接地线短路测试	测试 DUT 或 CAN 总线在 CANH 对电源短路和 CANL 对地短路后 的恢复能力。	
	CANH 接地线、CANL 接电源短路测试	测试 DUT 或 CAN 总线在 CANH 对地短路和 CANL 对电源短路后 的恢复能力。	
			基本测试要求:
总线断路测试		测试 DUT 或 CAN 总线,在总线断路一段时间后,DUT 或 CAN 总线	DUT 能够对其它节点 发送的报文进行应 答,在检测错误时能 够产生错误帧。
			▶ 当通信链路的断路故 障去除后 DUT 能够 自行恢复通信

CAN 总线分析仪

4志	ᄂ	ŧ
2 <u>-</u>		マワ
ーノン	<u> </u>	

总线异常测试				
错误终端电阻	测试 DUT 或 CAN 总线在错误的终端电阻(30Ω)的情况下,DUT 或 CAN 总线的自我恢复能力。	 基本测试要求: DUT 能够对其它节点 发送的报文进行应 答,在检测错误时能 够产生错误帧 当恢复正常的通信终 端电阻后 DUT 能够 自行恢复通信 DUT 不能自带终端电 阻 		
发送干扰测试	对 DUT 或 CAN 总线进行错误干 扰,以验证这个节点或者系统的鲁 棒性(可恢复性)。	 基本测试要求: DUT 能够对其它节点 发送的报文进行应 答,在检测错误时能 够产生错误帧。 当干扰结束后 DUT 能够自行恢复通信 		
错误波特率	测试 DUT 或 CAN 总线在错误的波 特率干扰的情况下,DUT 或 CAN 总线自我恢复能力。	 基本测试要求: DUT 能够对其它节点 发送的报文进行应 答,在检测错误时能 够产生错误帧。 当干扰结束后 DUT 能够自行恢复通信 		

 $\textcircled{\sc c}2022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

10. 技术规格

10.1 设备主机

表 10.1CANScope 主机技术参数

CANScope Standard 版/Pro 版主机				
电脑 最低 配置		1.6 GHz 以上 CPU(推荐双核 CPU)		
	硬件配置	1G Bytes RAM(推荐 2G Bytes)		
		1GBytes 以上的用户目录硬盘空余空间		
		USB2.0/USB3.0 主机控制器		
	操作系统	Windows XP/Vista/ 7/ 8/10		
	供电电压	+12V		
	消耗功率(Max)	10W		
主机	工作温度	-5~55℃		
硬件	存储温度	-20~75℃		
参数	物理尺寸	宽×高×深=190mm×48mm×190mm		
	重量	净重: 1.05Kg		
	USB 传输速率(Max)	480Mbps(高速模式)		
	数据源	CAN-H、CAN-L、CAN-DIFF		
	叠加速率	500,000UI/s (硬件—由信号速率决定)		
硬件	垂直灵敏度(V/div)	0.125 V/div 、0.25 V/div 、0.5 V/div 、1 V/div 、2.5 V/div 、6.25 V/div		
眼图	水平范围	由示波器模块水平时基决定		
	测量方式	光标(电压时间)、鼠标、自动测量		
	模板	系统标准模板、用户自定义模板		
示波器		通道数	2	
	采集	实时采样率(Max)	100M Sa/s(每通道)	
		垂直分辨率	8位	

 $@2022 \; \mbox{Guangzhou ZHIYUAN Electronics Co., Ltd.}$

CAN 总线分析仪

续上表

CANScope Standard 版/Pro 版主机			
	垂直系统	输入阻抗	1MΩ±1%
		垂直灵敏度(V/div)	0.125 V/div 、0.25 V/div 、0.5 V/div 、 1 V/div、2.5 V/div、6.25 V/div
		输入电容	~ 20pF
		耦合方式	交流、直流
		静电放电容差	+2kV
		扫速范围(s/div)	1µs/div -1s/div(1-2-5 步进)
	水平	工作模式	主模式
	触发系统	触发模式	自动模式、正常模式
示波器		触发源	CAN-H、CAN-L、CAN-DIFF、 CAN-RXD、CAN-TXD、帧起 始、外部
		触发类型	上升沿、下降沿、双边沿、正 脉宽、负脉宽
		触发方式	自动、普通
		外部触发电压	-10V~+10V
	FFT	点数	1024(Standard 版)、4096(Pro 版)
		FFT 数据源	CAN-H、CAN-L、CAN-DIFF
		数据范围	全部数据、窗口显示范围
		竖坐标单位选择	对数、有效值、幅值
	测量特性	光标	支持电压及时间测量

 $\textcircled{\sc c}2022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

10.2 高级功能

表 1	0.2 0	CANScope-	Pro 高级I	力能参数
-----	-------	-----------	---------	------

CANScope PRO 高级功能参数			
	5 组电阻调节范围	0Ω~10.24kΩ, (不包括 10.24kΩ), 步进 2.5Ω	
模拟干扰	1组电容调节范围	0nF~15.75nF,步进250pF	
StressZ 模块	外部输入干扰电压范围	-36V~36V(Udis 对地不超±36V,Udis 间压差不超 ±48V)	
	错误波特率	5Kbps~1Mbps	
数字干扰	帧结构错误	基本帧 ID、SRR、RTR、R1、R0、DLC、CRC 序列 填充错误等	
	发送干扰	帧 ID 干扰、DLC 干扰、数据干扰、随机干扰	
	接收干扰	帧类型、帧 ID 匹配、数据匹配、干扰位置	
)고리 아무 국도 슈티	采样点测试	测试节点采样点位置	
视机切肥	位宽度容忍测试	测试节点位宽度适应范围与波特率范围	
	帧 ID	标准帧 ID 11 位、扩展帧 ID 29 位	
事件标记	帧数据	64 位	
	眼图模板	系统标准模板、用户自定义模板	
	叠加速率	1万 UI/s(软件—和电脑配置有关)	
软件眼图	帧类型	标准数据帧、标准远程帧、扩展数据帧、扩展远程 帧	
	数据长度	最大8字节	
	事件标记	帧 ID、帧数据、眼图模板	

10.3 标配收发器

表 10.3 标配收发器参数

收发器(标配) 技术参数	CANScope-P8251T	CANScope-P1040T
终端电阻	120Ω(可选述	耑接或断开)
隔离电压	250	00V
瞬间电压	-200V	~200V
通信接口	M12 连接器,符合 Devi	ceNet 和 CANopen 标准
协议支持	支持 CAN2.0A/CAN2.0B 协计	义,符合 ISO/DIS 11898 标准

 $\textcircled{\sc c}2022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

CAN 总线分析仪

续上表

收发器(标配) 技术参数	CANScope-P8251T	CANScope-P1040T
数据传送速率	5Kbps~1Mbps	20Kbps~1Mbps
CANH、CANL可承受电压	-36 V ~+36 V	-27V~40V
显性差分电平	1.5V~3.0V	1.5V~3.0V
隐性差分电平	-0.1V~1.0V	-50mV~50mV
差分门限电压	—	0.5V~0.9V
显性 CANH 电平	3.0V~4.5V	3.0V~4.25V
显性 CANL 电平	0.5V~2.0V	0.5V~1.75V
隐性 CANH 电平	2V~3V	2V~3V
隐性 CANL 电平	24 54	
共模输入阻抗	5k~25kΩ	15k~35kΩ
差分输入电阻(120Ω断开)	25k~75kΩ	20k~100kΩ
CANH 短路电流	100mA(CANH 接-36V)	95mA(CANH 接 0V)
CANL短路电流	200mA(CANL 接 36V)	100mA(CANL 接 40V)

10.4 选配件

表 10.4 选配件

选配件	类型	说明	
		1、5 芯标准 CANbus 线缆 1 条,带安全插座;	
	硬件	2、测试表笔,带挂钩。5个	
		3、高精度鳄鱼夹。5个	
CANS cope-StressZ 模 11 测量与干扰扩展板	软件	1、模拟干扰测试插件。	
		2、网络终端电阻测试插件。	
		3、阻抗相位插件。	
		4、总线长度,容抗,阻抗模拟插件	
便携移动电源	 <i> 面 </i>	便携式电源,可以用于 CAN 分析仪与逻辑分析仪选配,方便在现	
(文)(丁		场测试。	
CANS cone-P1055T	硬件	容错 CAN 适配器, 可接入汽车容错 CAN 网络进行测试	
	~ 11		
CANS cope-P7356	硬件	单线 CAN 适配器,可接入汽车单线 CAN 网络进行测试	
M12-OBD	硬件	汽车 OBD 接头,可接入汽车标准的诊断口	

 $\textcircled{\sc conditions} 02022$ Guangzhou ZHIYUAN Electronics Co., Ltd.

11. 免责声明

本着为用户提供更好服务的原则,广州致远电子股份有限公司(下称"致远电子")在 本手册中将尽可能地为用户呈现详实、准确的产品信息。但介于本手册的内容具有一定的时 效性,致远电子不能完全保证该文档在任何时段的时效性与适用性。致远电子有权在没有通 知的情况下对本手册上的内容进行更新,恕不另行通知。为了得到最新版本的信息,请尊敬 的用户定时访问致远电子官方网站或者与致远电子工作人员联系。感谢您的包容与支持!

诚信共赢,客户为先,专业专注,只做第一

广州致远电子股份有限公司^{更多详情请溯} www.zlg.cn

欢迎拨打全国服务热线 400-888-4005

