

PXB-60xxD

User Manual for Modbus Protocol

UM01010101 0.92 Date:2024/8/06

category	content			
key word	PXB-60xxD protocol converter, user manual, product manual			
abstract	This document provides customers with instructions on the PXB-60xxD series protocol converter, including product hardware interface introduction, software configuration, etc., to facilitate customers' quick evaluation, application, and product getting started.			

Revision history

edition	date	reason	
V0.90	2024/02/28	Document release	
V0.91	2024/03/18	Adjust the manual format and optimize the manual instructions.	
V0.92	2024/08/06	Optimize some functional descriptions	

Contents

1. Product Introduction	4
1.1 Product Introduction	4
1.2 Product Series Description	2
1.2.1 Naming Rules	.2
1.2.2 Ordering Information	.2
1.3 Hardware Features	3
1.4 Software Features	4
2. Hardware Description	7
2.1 Product Appearance	7
2.2 Indicator light description	9
2.3 Interface Definition	3
2.3.1 Power interface	3
2.3.2 Implicit buttons	3
2.3.3 LED indicator light	.3
2.3.4 CAN/CAN FD interface 1	5
2.3.5 RS485 interface1	5
2.3.6 Ethernet port1	5
2.3.7 Terminal Resistance	.5
3. Instructions for use 1	7
3.1 AWPX configuration software 1	.7
3.1.1 Configuration software acquisition and installation1	.7
3.1.2 Introduction to Software Configuration Functions 1	.8
3.2 Equipment Configuration	21
3.2.1 PXB-6020D Parameter Configuration	21
3.2.2 PXB-6021D Parameter Configuration	27
3.2.3 PXB-6021DM Parameter Configuration	60
3.2.4 PXB-6022D Parameter Configuration	8
3.2.5 PXB-6022DM Parameter Configuration	1
3.2.6 PXB-6030D Parameter Settings	19
4. Dreduct installation)1 :7
4.1 Mechanical dimensions)7
4.2 Installation method	,
5. Product maintenance and precautions	8
6. Appendix	9
6.1 Product Packing List 5	;9
7. Disclaimer	0

1. Product Introduction

1.1 Product Introduction

The PXB-60xxD series products are various industrial fieldbus protocol converters such as Modbus to CAN/CAN FD, DeviceNet, OPC UA, etc. launched by Guangzhou Zhiyuan Electronics Co., Ltd. This series of products includes 1 CAN FD, 1 RS485 interface, 1 standard 10/100M Ethernet interface, and 1 USB Type-C interface. It is equipped with a domestically produced high-performance RISC-V processor, which is used for high-speed bidirectional conversion of Modbus and various industrial fieldbus data messages. The PXB-60xxD series protocol converter provides a configuration tool for the upper computer, which can flexibly configure relevant functions and easily achieve seamless conversion of various industrial bus protocol data to Modbus data.

Figure 1.1 Product Diagram of PXB-60xxD Series

PXB-60xxD

User Manual for Modbus Protocol

1.2 Product Series Description

1.2.1 Naming Rules

The naming convention for PXB protocol converter series products is shown in Figure 1.2.

M: CANopen / DeviceNet主站

Figure 1.2 Naming Rules for Series Products

1.2.2 Ordering Information

Table 1.1 Ordering Information

Product model	Protocol conversion type	Installation method
PXB-6020D	Modbus <=> CAN/CAN FD	35mm DIN rail
PXB-6021D	Modbus <=> CANopen	35mm DIN rail
PXB-6021DM	Modbus<=>CANopen (master station)	35mm DIN rail
PXB-6022D	Modbus <=> DeviceNet	35mm DIN rail
PXB-6022DM	Modbus<=>DeviceNet (master station)	35mm DIN rail
PXB-6030D	Modbus RTU /ASCII<=> Modbus TCP	35mm DIN rail
PXB-6031D	Modbus <=> OPC UA	35mm DIN rail

1.3 Hardware Features

input voltage	9 ~ 36VDC,150mA @ 12VDC			
Power protection	Anti reverse connection protection, short circuit protection			
Automatic restart trigger	Built in independent WDT (watchdog timer)			
RS485 isolation	Digital isolation, power isolation			
CAN isolation	Digital isolation, power isolation			
RS485 baud rate	Up to 2Mbps			
CAN FD baud rate	40k~5Mbps, supports CAN FD acceleration			
Terminal resistance	Built in 120 ohms (can be configured using upper computer software)			
Shell material	Metal			
size	125.00mm × 76.00mm × 28.00mm (bare metal)			
Installation method	Standard 35mm DIN rail			
working temperature	-40 to 85 ° C (-40 to 185 ° F)			
Storage temperature (including packaging)	-40 to 85 ° C (-40 to 185 ° F)			
relative humidity	5 to 95% (non condensing)			
EMI	EN55032, CLASS A			
	IEC/EN 61000-4-2 ESD: Contact: 4.0 kV; Air: 8.0 kV			
5140	IEC/EN 61000-4-4 EFT: Power supply: 1.0 kV; Signal:			
EMC	0.5 kV IEC/EN 61000-4-5 Surge: Power supply: 1.0 kV;			
Signal: 0.5 kV				
	IEC/EN 61000-4-6 CS (150 kHz to 80 MHz): Power supply: 3 V/m; Signal: 3 V/m			

 Table 1.2 Product Hardware Characteristics

1.4 Software Features

Table	1.3	Software	Features
1 4010	1.5	Solution	1 cutul co

Product model	Software Features				
	Provide four working modes: Modbus RTU master/slave, Modbus TCP master/slave				
	The serial port baud rate supports user settings of 2400-2000000bps, with a maximum support of 2M baud rate				
	Serial port data bit, stop bit, and check bit can all be set				
	IP address, slave ID, destination IP, and port can all be set				
	Support register types: coil, input status, input register, hold register				
PXB-6020D	Support setting parameters such as CAN type, CAN FD standard, and CAN FD acceleration				
	Support sending and receiving CAN, CAN FD, and CAN FD acceleration messages				
	CAN message transmission supports multiple triggering methods such as cycle, status change, and single transmission				
	Supports sending 128 sets of messages and receiving 128 sets of whitelist messages				
	Support the conversion of data between Modbus and CAN FD buses in the form of whole frames, bytes, bits, etc				
	CAN message transmission supports multiple data sources				
	Support setting the waiting time for sending				
	Support custom sending mode, can customize precise sending of CAN or CAN FD messages				
	Provide two working modes: Modbus RTU/TCP master to CANopen slave				
	The serial port baud rate supports user settings of 2400-2000000bps, with a maximum support of 2M baud rate				
	Serial port data bit, stop bit, and check bit can all be set				
	IP address, slave ID, destination IP, and port can all be set				
PXB-6021D	Support register types: coil, input status, input register, hold register				
	Support 80 sets of TPDO and 80 sets of RPDO				
	Support modifying the Node ID of CANopen and the COB-ID of PDO				
	Support modifying CAN baud rate, up to 1Mbps				
	Support precise setting of data synchronization time for each TPDO				
	Support the conversion of data between Modbus and CANopen protocols in the form of bits, bytes, words, etc				
	Can update device EDS files and provide standard EDS files for supporting equipment				
	Provide four working modes:				
	Modbus RTU master/slave to CANopen master				
	The serial port baud rate supports user settings of 2400-2000000bps, with a maximum support of 2Mbps baud rate				
	Serial port data bit, stop bit, and check bit can all be set				
(CANopen Master	IP address, slave ID, destination IP, and port can all be set				
Station)	Support register types: coil, input status, input register, hold register				
	Supports 126 CANopen slave devices				
	Supports 128 sets of TPDO and 128 sets of RPDO				
	Support modifying the Node ID of CANopen master station				

User Manual for Modbus Protocol

Product model	Software Features				
	Support SDO read and write, complete CANopen from device initialization configuration				
	Support modifying CAN baud rate, up to 1Mbps				
	Support precise setting of data synchronization time for each TPDO				
	Support the conversion of data between Modbus and CANopen protocols in the form of bits, bytes, words, etc				
	Provide two working modes: Modbus RTU/TCP master to DeviceNet slave				
	The serial port baud rate supports user settings of 2400-2000000bps, with a maximum support of 2M baud rate				
	Serial port data bit, stop bit, and check bit can all be set				
	IP address, slave ID, destination IP, and port can all be set				
	Support register types: coil, input status, input register, hold register				
BVD (022D	This device serves as a standard DevicetNet slave and supports polling based I/O connection types				
PXB-6022D	DeviceNet supports speeds of 125K, 250K, and 500K				
	Supports multi-level input and output bytes, with a maximum of 512 bytes for input and 512 bytes for output				
	Support mutual conversion of data between Modbus and DeviceNet protocols in the form of bits, bytes, words, etc				
	Support DeviceNet I/O scanning				
	Support setting data update interval				
	Provide standard EDS files for DeviceNet				
	Provide four working modes:				
	Modbus RTU master/slave to DeviceNet master				
	The serial port baud rate supports user settings of 2400-2000000bps, with a maximum support of 2M baud rate				
	Serial port data bit, stop bit, and check bit can all be set				
	IP address, slave ID, destination IP, and port can all be set				
	Support register types: coil, input status, input register, hold register				
PXB-6022DM (DeviceNet Master	This device serves as a standard DevicetNet master and supports up to 63 DevicetNet slave devices				
Station)	DviceNet supports speeds of 125K, 250K, and 500K				
	Supports four types of I/O connections: polling, bit gating, cycle, and state change				
	Each I/O connection type supports up to 64 bytes of input/output cache				
	Support mutual conversion of data between Modbus and DeviceNet protocols in the form of bits, bytes, words, etc				
	Support configuring the data update cycle for each DevicetNet slave station				
	Provide four working modes:				
	Modbus RTU Master <=> Modbus TCP Slave				
PXB-6030D	Modbus ASCII Master <=> Modbus TCP Slave				
	Modbus TCP Master<=>Modbus RTU Slave				
	Modbus TCP Master<=>Modbus ASCII Slave				
	The serial port baud rate supports user settings of 2400-2000000bps, with a maximum support of 2M haud rate				
	Serial port data bit, stop bit, and check bit can all be set				
	Work port, target IP, and port can all be set				
	Support register types: coil, input status, input register, hold register				
	Supporting protocols include: Modbus RTU Modbus ASCII、 Modbus TCP、				
	ETHERNET, ARP, IP, UDP, TCP, DHCP, ICMP				

PXB-60xxD

User Manual for Modbus Protocol

Product model	Software Features
	Modbus TCP supports up to 8 connections
	Supports up to 255 Modbus RTU/ASCII slaves
	Support setting TCP connection keep alive time and automatically disconnecting abnormal connections
	Support setting reconnection time, automatic reconnection for TCP connection disconnection
	Support device ID mapping function
	Provide two working modes:
	Modbus RTU master to OPC UA server
	Modbus TCP Master to OPC UA Server
	The serial port baud rate supports user settings of 2400-2000000bps, with a maximum support of 2M baud rate
	Serial port data bit, stop bit, and check bit can all be set
	Support register types: coil, input status, input register, hold register
	Supports up to 8 OPC UA objects and 2000 total variables
PXB-6031D	Support setting the size end format of data and enable word swapping
	Support OPC UA object and variable editing
	Support modifying OPC UA network configuration parameters
	Support data encryption and signature
	Support user access control
	Support rich OPC UA data formats for operation
	Support setting transformation coefficients for easy data observation and calculation
	Support setting data update interval
	Equipped with AWPX Tools configuration software, simple and easy to use
	Support software configuration to enable CAN and RS485 terminal resistors
Other characteristics	Support one click factory reset and multiple guarantees
	Support one click firmware upgrade

2. Hardware Description

2.1 Product Appearance

Figure 2.3 Product Front View (Taking PXB-6020D as an Example)

The PXB-60xxD series products have one power interface and one implicit button for resetting to factory settings on the top. The product has one CAN/CAN FD interface and RS485 interface with electrical isolation on the side, one standard 10/100M Ethernet interface, and four LED indicator lights.

Note: For specific LED and interface definitions and usage, please refer to 2.2 Indicator Light Instructions and 2.3 Interface Definitions.

2.2 Indicator light description

The PXB-60xxD series products have four LED lights on the front, with different functional instructions in different product models. They are abbreviated according to relevant professional vocabulary to form corresponding labels, namely PWR, RUN, CAN, 485, MS, and NS. The specific instructions for the indicator lights of PXB-60xxD series products are shown in Table 2.1-2.7:

The indicator lights for PXB-6020D are described in Table 2.1.

Table 2.1 PXB-6020D Indicator Light Status Descri	ption
---	-------

identification	definition	state	explain
PWR	Equipment power	The red light is always on	Equipment power supply is normal
	indicator right	Not lit up	The device is not powered on or has abnormal power supply
		Green light flashing	The device has entered working mode and is running normally
RUN	Equipment operation	The and light in	The device is running in Modbus TCP master
	indicator light	always on	mode and is not connected to any Modbus TCP
		always on	slave
		Not lit up	Equipment import configuration error
485	Working mode	Green light always	The device operates in Modbus RTU mode (master or slave)
100	indicator light	Net lit on	The device exercise in Medhue TCD mede
		Not iit up	(master or slave)
CAN	CAN communication indicator light	Green light flashing	CAN/CAN FD data transmission and reception are normal
		Red light flashing	CAN/CAN FD data transmission and reception abnormal
		Not lit up	The device is not sending or receiving CAN/CAN FD data

The indicator lights for PXB-6021D are described in Table 2.2.

Table 2.2 PXB-6021D Indicator	Light Status	Description
-------------------------------	--------------	-------------

identification	definition	state	explain
PWR	Equipment power	The red light is always on	Equipment power supply is normal
	indicator light	Not lit up	The device is not powered on or has abnormal power supply
		Green light flashing	The device has entered working mode and is running normally
RUN	Equipment operation indicator light	The red light is always on	The device is running in Modbus TCP master mode and is not connected to any Modbus TCP slave
		Not lit up	Equipment import configuration error
485	Working mode	Green light always on	The device operates in Modbus RTU mode
	indicator right	Not lit up	The device is operating in Modbus TCP mode
CAN	CAN communication	Not lit up	The device has not established a correct connection with the CANopen master station
	indicator light	Green light always on	The device has established a correct connection with the CANopen master station

The indicator lights of PXB-6021DM are described in Table 2.3.

identification	definition	state	explain
PWR	Equipment power	The red light is always on	Equipment power supply is normal
	indicator light	Not lit up	The device is not powered on or has abnormal power supply
RUN	Equipment operation	Green light flashing	The device has entered working mode and is running normally
	indicator light	The red light is always on	Equipment malfunction
		Not lit up	Equipment import configuration error
485	Modbus indicator	Green light always on	Modbus network is normal
	lıght	The red light is always on	Modbus communication exception
CAN	CAN communication	The red light is always on	CANopen master station startup failed
Crit	indicator light	Green light flashing	Network node disconnection
		Green light always on	CANopen network is normal

Table 2.3	PXB-6021DM	Indicator Light	Status Descriptio	m
1 4010 2.5	1710 00210101	maleutor Eight	Status Descriptio	11

The indicator lights for PXB-6022D and PXB-6022DM are described in Table 2.4.

After powering on, PXB-6022D and PXB-6022DM devices will perform LED self-test, and users can determine whether the device is running by observing the status of the LED; Firstly, MS self-test: display green for 0.25s ->display red for 0.25s ->display green; Then NS self-test: display green 0.25->display red 0.25 s ->turn off.

identification	definition	state	explain
PWR	Equipment power	The red light is always on	Equipment power supply is normal
	indicator right	Not lit up	The device is not powered on or has abnormal power supply
485	Working mode	Green light always on	The device operates in Modbus RTU mode
	indicator light	Not lit up	The device is operating in Modbus TCP mode
		Not lit up	No power supply to the device
	AS Node working status indicator light	Green light always on The equipment is running normally	
MS		Green light flashing	Due to missing, incomplete or incorrect configuration, the device needs to be debugged
		Red light flashing	Recoverable faults
		The red light is always on	Unrecoverable fault, needs to be replaced
		Red and green flashing	The device is self checking
			The device is not online
		Not lit up	The device has not completed
			duplicate MAC ID detection
	Node network		and is not powered on
ZLG			© 2024 Guangzhou ZHIYUAN Electronics Co.,

Table 2.4 Status Description of PXB-6022D and PXB-6022DM Indicator Lights

Uesr Manual

Green light flashing	The device is online but not connected and is in an established state
Green light always on	The device is online and has one or more established connections
Red light flash	ng Communication failure: repeated MAC ID detection failed, bus BUS-OFF
Red and gree flashing	The device has detected a network access error and is in a communication failure state, and has received a point- to-point recognition offline fault request message

The indicator lights for PXB-6030D are described in Table 2.5.

identification	definition	state	explain
PWR	Equipment power	The red light is always on	Equipment power supply is normal
	indicator light	Not lit up	The device is not powered on or has abnormal power supply
		Green light flashing	The device has entered working mode and is running normally
RUN	Equipment operation indicator light	The red light is always on	The device is running in Modbus TCP master mode and is not connected to any Modbus TCP slave
		Not lit up	Equipment import configuration error
485	Protocol conversion	Green light always on	Abnormal device protocol conversion
	indicator light	Green light flashing	Device protocol conversion successful

Table 2.5 PXB-6030D Indicator Light Status Descripti
--

The indicator lights for PXB-6031D are described in Table 2.6.

Table	2.6 PXB	-6031D	Indicator	Light	Status	Description
-------	---------	--------	-----------	-------	--------	-------------

identification	definition	state	explain
PWR	Equipment power	The red light is always on	Equipment power supply is normal
	indicator light	Not lit up	The device is not powered on or has abnormal power supply
	.	Green light flashing	The device has entered working mode and is running normally
RUN	Equipment operation indicator light	The red light is always on	The device is running in Modbus TCP master mode and is not connected to any Modbus TCP slave
		Not lit up	Equipment import configuration error
485	Working mode	Green light always on	The device operates in Modbus RTU mode
	indicator light	Not lit up	The device is operating in Modbus TCP mode

2.3 Interface Definition

The PXB-60xxD series products have one CAN/CAN FD interface and RS485 interface with electrical isolation on the side, one standard 10/100M Ethernet interface, and four LED indicator lights, as shown in Figure 2.4.

Figure 2.4 Schematic diagram of side interface definition

2.3.1 Power interface

The power supply supports a wide voltage input of 9-36V, and customers can choose a power supply within the voltage range to supply power to the equipment according to the on-site environment. The physical form of the power interface connector is an OPEN3 3.08mm spacing lockable socket, and the shell silk screen label is "9V~36V". The power supply requirements for the product are shown in Table 2.7.

parameter	minimum	typical	maximum	Company
working voltage	nine	12	thirty-six	V
Working current	_	100	—	mA
Product power consumption		1.2		W

Table2.7 Power Interface Input Power Specification

2.3.2 Implicit buttons

Considering that customers may have parameter configuration errors during use, which may result in abnormal product operation, a hidden button is reserved on the top of the product to restore factory settings, and the silk screen label on the shell is "DEFAULT".

During the power on process, pressing and holding the factory reset button will automatically restore the device to its factory settings, but it will not restart; If the product is running and long pressed for 5 seconds, it will automatically reset to factory settings and restart.

After restoring the factory settings, the original configuration parameters inside the device will be cleared.

2.3.3 LED indicator light

The PXB-602xD series products have four LED lights on the front, namely PWR, RUN, CAN, and 485 lights, except for the PXB-6022D and PXB-6022DM models. The PXB-6022D and PXB-

6022DM products have four LED lights on the front, namely PWR, 485, MS, and NS lights.

The PXB-603xD series products have three LED lights on the front, namely PWR, RUN, and 485 lights.

2.3.4 CAN/CAN FD interface

When the product is the PXB-602xD series, there is one CAN/CAN FD interface on the top interface of the product, and the interface identification is shown in Table 2.8:

identificatio	explain
CANH	Isolate CAN_Signal Line
CANL	Isolate CAN_L signal line
CGND	Isolate CAN ground

Table 2.8 CAN/CAN FD Interface Identification Description

When the product is the PXB-603xD series, there is no CAN/CANFD interface on the top of the product.

2.3.5 RS485 interface

The PXB-60xxD series products have one RS485 interface on the side interface, and the interface identification is shown in Table 2.9:

identification	explain
485A	Isolate RS485 signal line
485B	Isolate RS485 signal line
RGND	Isolate RS485 ground

Table 2.9 RS485 Interface Identification Description

2.3.6 Ethernet port

The Ethernet port is labeled as NET and supports standard 10/100M Ethernet communication. This port can not only serve as a Modbus TCP communication interface, but also as a device configuration port. Users can connect to the switch or PC through this network port, and use the matching upper computer software to configure the corresponding parameters such as working mode, data baud rate, and data format of this product.

2.3.7 Terminal Resistance

The PXB-60xxD series products reserve a terminal resistor of 120 ohms for both CAN and RS485 communication ports, and do not connect to the bus by default. Users can configure it using AWPX Tools software, as shown in Figure 2.5-2.6. Users can choose to connect or disconnect the terminal resistor to the bus, which can save the trouble of external series connection or disconnection of resistors.

目 🕢 扫描设备 🐺 保存配置	計 获取配置	→ 导入配置	● 日出配置 ●	- ✿ 系统设置	•
标板					
[00:14:97:0f:02:90]-192.168.1.136 •		CAN类型选择 CANFD			*
议转换类型					
PXB-6020D -		仲裁段波特率 1M		*	
≹备配置		数据段波特率			
Modbus设置		5M			
CANFD参数		CANFD标准			
发送报文		N0II-ISU			
接收报文		发送等待时间(ms) 5000			
自定义发送					
		CANFD终端电阻使能 禁能			*
		£			

🗭 AWPX Tools

目标板		
[00:14:97:0f:02:90]-192.168.1.136 •	工作模式 Modbus RTU主站	*
办议转换类型		
PXB-6020D -	波特率 115200	*
设备配置	教展位	
Modbus设置	8	*
CANFD参数	停止位	•
发送报文	1	
接收报文	校验位 Nono	*
自定义发送		
	终端电阻使能 使能	*
	-	

Figure 2.6 RS485 Terminal Resistance Configuration

3. Instructions for use

3.1 AWPX configuration software

3.1.1 Configuration software acquisition and installation

The PXB series protocol converters are configured through AWPX Tools software (hereinafter referred to as AWPX). The AWPX Tools configuration software can be downloaded by searching for "AWPX" on our official website (www.zlg. cn).<u>https://www.zlg.cn/index.php</u> After downloading, double-click the installation package of AWPX to start installing AWPX. The installation start interface is shown in Figure 3.1.

😰 安装 - AWPX Tools 版本 0.2.6	- 🗆 X
选择目标位置 您想将 AWPX Tools 安装在哪里?	
安装程序将安装 AWPX Tools 到下列文件夹中。	
点击"下一步"继续。如果您想选择其它文件夹,点击"浏览"。	
C:\Program Files (x86)\AWPX Tools	浏览(R)
至少需要有 426.6 MB 的可用磁盘空间。	
	下一步创取消

Figure 3.1 Start installing AWPX

After clicking on several 'Next' buttons, the installation interface is shown in Figure 3.2.

F装程序现在准备开始安装 AWPX Tools 到您的电脑中。		0
贡击"安装"继续此安装程序。如果您想要回顾或修改设置	,请点击"上一步"。	
目标位置: C:\Program Files (x86)\AWPX Tools		^
附加任务: 附加快捷方式:		
创建桌面快捷方式(D)		
		Ŷ

Figure 3.2 AWPX Installation Interface

Finally, click on 'Install' to officially start the installation of AWPX. Please be patient and wait for the installation to complete.

3.1.2 Introduction to Software Configuration Functions

Run the AWPX software, and the interface is shown in Figure 3.3. After powering on the product, connect the PXB-60xxD product to run AWPX. The PC host of the software is configured by connecting to the same LAN via Ethernet cable (through a switch or direct connection).

AWPX Tools						-		>
😋 扫描设备 🛛 🐺 保存配置	╦ 获取配置	-→ 号入配置	➡) 令出配置	_☆系统设置 ▼			ネ	0
示板								
	*	工作模式 Modbus RTU主站			*			
转换类型		Seat de						
KB-6020D	•	115200			Ŧ			
配置		数据位						
Modbus设置		8						
CANFD参数		停止位			•			
发送报文								
接收报文		校验位 None			*			
自定义发送		Adv Arth and The Part of the						
		使能			-			

Figure 3.3 AWPX interface

On the left side of the AWPX interface is the device information of the PXB series products, including "Target Board", "Protocol Conversion Type", and "Device Configuration". The specific information of configuration options is located on the right side of the "Device Configuration" column.

The top of the interface is the menu bar button, which includes buttons such as' Scan Device ',' Save Configuration ', 'Get Configuration ', etc. As shown in Figure 3.4.

1. Scanning equipment

Click the 'Scan Devices' button, and the AWPX software will search for all PXB series devices in the current local area network, and display the IP address and firmware version of the target board in the' Target Board 'drop-down box, as shown in Figure 3.5. After selecting the correct device in the "Target Board" dropdown menu, AWPX software will automatically load the configuration information of the device and display the corresponding product type in the "Protocol Conversion Type" dropdown menu.

😢 AWPX Tools	
😑 🕑 扫描设备 🛛 幕 保存配置	1 📑
目标板	
[00:14:97:0f:00:3e]-192.168.1.136	•
[00:14:97:0f:00:3e]-192.168.1.136 ver: 1.1.7	
PXB-6020D	*

Figure 3.5 Target board and firmware version

2. Save configuration

After modifying any parameter, click the 'Save Configuration' button to send the modified configuration to the PXB series protocol converter, making the modified configuration effective. Saving the configuration will restart the device, wait for the restart prompt at the bottom of the software to disappear.

3. Obtain configuration

After selecting the device, click the 'Get Configuration' button to obtain and display the current configuration of the PXB series protocol converter running.

4. Import configuration

After selecting the device, click the 'Import Configuration' button to import configuration files with. awp or. zip suffixes into AWPX Software. After importing the correct configuration, the imported configuration can be modified ordirectly saved to the device.

Special note: Do not import configurations across versions for use, for example: please export configurations from devices with firmware version 1.1.7.Do not import and save to devices with firmware version 1.1.8 through 'Import Configuration'.

5. Export configuration

After selecting the device, click the 'Export Configuration' button to export the current configuration parameters as a configuration file with the awp or. zip suffix. So that the next time you use AWPX, you can quickly import and configure the locally saved configuration file by clicking the 'Import Configuration' button.

Special note: The exported configuration only supports devices with the same firmware version, such as those with firmware version 1.1.7. The configuration exported by the device only supports devices with firmware version 1.1.7.

6. System settings

Clicking on the 'System Settings' button will bring up four options:' Network Settings', 'System Information', 'Firmware Upgrade', and 'About'. The system information includes the device ID, type, and other details of the PXB-60xxD device, while the version information related to the AWPX configuration software is provided. Next, we will focus on describing two functions: network settings and firmware upgrade.

Network settings: The default IP address for PXB-60xxD series product devices is "192.168.1.136". If you need to change network parameters such as IP address, you can click the "System Settings" button at the top of the software interface, and then click the "Network Settings" button in the pop-up menu to perform network settings, as shown in Figure 3.6.

PXB-60xxD

User Manual for Modbus Protocol

Uesr Manual

8 AWPX Tools	200		×
三 🔘 扫描设备 👎 保存配置 🖙 获取配置 🕙 导入配置 🔛 导出配置 📅 系统设置 👻		Â	0
目标型 100:14:97:0f:02:90]-192.163.1.136 * か以T投炭工型 26年200 * PXB-6020D * * #S&ET2 Modbus 827 * Modbus 827 P/E * CANFD参数 25/250 * B定UP地址 * * Brew 8 PHCP Brew 9 Brew 8 PHCP Brew 9 Brew 9 * * Brew 9 * *			

Figure 3.6 Network Setting

Firmware Upgrade: Click on "System Settings" and select "Firmware Upgrade" from the pop-up menu. AWPX will display the upgrade interface, as shown in Figure 3.7.

B AWPX Tools			
😑 🔘 扫描设备 🐺 保存配置 🖙 获	取配置 🕙 号入配置 🔁 号出配置 📑 系统设置 🔫		× C
目标板			
[00:14:97:0f:02:90]-192.168.1.136 *	工作模式 Modbus RTU主站	•	
协议转换类型			
PXB-6020D -	波特率 115200	•	
设备配置	教服位		
Modbus设置	8		
CANFD参数	停止位	_	
发送报文	固件升级		
接收报文	校验位 None In French		
自定义发送			
	《編曲》 使能	0 (0.0B)	
		1件升级 关闭	

Figure 3.7 Firmware Upgrade Interface

Click on 'Select Firmware' in the selection box, choose the firmware (bin file) that needs to be upgraded, and click on 'Firmware Upgrade',AWPX will prompt that firmware is being downloaded to the device, and the entire upgrade process will take about 2 minutes.

After about 1 minute, AWPX will prompt that the device firmware download is successful, and the PXB-60xxD product will automatically restart. Please wait patiently for about 1 minute. During this restart process, do not disconnect the power supply of the product. After upgrading the firmware, you need to click again [Scan Device] button, rescan and select the device for configuration.

3.2 Equipment Configuration

The main steps for configuring devices using AWPX configuration software are: Step one, click on 'Scan Devices' and select the correct device. If the device is not scanned and selected, it will not be possible to Configure the PXB-60xxD series protocol converter accordingly;

Step 2, configure parameters. You can configure the parameters in the "Device Configuration" column and network parameters according to your needs; Step 3: After completing the parameter configuration, click [Save Configuration] to save the configured parameters to the device and wait for the device to restart. Just complete it.

3.2.1 PXB-6020D Parameter Configuration

1. Modbus parameter configuration

Click on "Modbus Settings" in the "Device Configuration" column of AWPX software to configure Modbus parameters, including RTU communication parameters such as working mode, baud rate, and check bit. The maximum serial port baud rate can be configured as 2M. The configuration interface is shown in Figure 3.8.

目标板		
[00:14:97:0f:02:90]-192.168.1.136 •	工作模式 Modbus RTU主站	*
办议转换类型		
PXB-6020D -	波特率 115200	*
後备配置	数据位	
Modbus设置	8	
CANFD参数	停止位	*
发送报文	1	
接收报文	校验位	*
自定义发送	None	
	终端电阻使能 使能	×

Figure 3.8 Modbus parameter settings

PXB-6020D supports four working modes, which can be selected through the "Working Mode" drop-down list box. Each working mode has corresponding Modbus parameters, and the functional descriptions and corresponding parameter descriptions of these four working modes are shown in Table 3.1.

Working mode	Function Description	Configuration	Configuration item
		Baud rate	
	PXB-6020D works as a	Data bits	RTU communication parameters
Modbus RTU master	Modbus RTU master and	Stop position	
	RTU slaves	Checksum	
		Terminal resistance enable	RS485 terminal resistor enable
		Baud rate	
	PXB-6020D works as a Modbus RTU slave, with 2400 built-in coils, input status, input registers, and hold	Data bits	RTU communication parameters
Modbus RTU slave		Stop position	r and r a
station		Checksum	
	registers, all with addresses	Local slave ID	PXB-6020D serves as the ID for the slave station
	ranging from 0 to 2399	Terminal resistance enable	RS485 terminal resistor enable
Modbus TCP Master	PXB-6020D operates as a	Slave IP address	The IP address of the only TCP slave station
	Modbus TCP master and serves as a TCP client	Slave port number	The unique TCP slave port number
		Peer slave number	Unique TCP slave ID
	PXB-6020D operates as a Modbus TCP slave and serves	Local port number	PXB-6020D serves as the port number for the slave station

Table 3.1 Modbus Parameter Description

PXB-60xxD

User Manual for Modbus Protocol

	Local slave number	PXB-6020D serves as the ID for the slave station
--	-----------------------	---

2. CAN FD parameter configuration

PXB-6020D can send CAN or CAN FD messages in any working mode. Click on 'CAN FD Parameters' in the' Device Configuration 'column of AWPX software to configure CAN FD parameters, as shown in Figure 3.9.

S AWPX 1001S 三 ② 扫描设备 ♀ 录 保存配置 ♀ 矛 刧	「「「「「」」 (19) (19) (19) (19) (19) (19) (19) (19)	系统设置 ▼
目标板		**
[00:14:97:0f:02:90]-192.168.1.136 •	CAN类型选择 CANFD	×
か议转换类型 PXB-6020D -	仲裁段波特率 1M	•
设备配置 Modbus设置	数据段波特率 5M	÷
CANFD参数 发送报文	CANFD标准 Non-ISO	•
接收报文 自定义发送	发送等待时间(ms) 5000	
	CANFD终端电阻使能 禁能	

Figure 3.9 CAN FD Parameter Interface

The CAN FD parameters are described in Table 3.2. Table 3.2 Description of CAN FD Parameters

parameter	Parameter Description
CAN type selection	The type selection can be CAN or CAN FD
Arbitration segment baud rate	Set the baud rate of the arbitration segment for CAN or CAN FD messages
Data segment baud rate	Optional when CAN type is CAN FD, set the data segment baud rate for CAN FD messages
CAN FD standard	Optional when CAN type is CAN FD, set the standard used for CAN FD messages
Sending waiting time	Used to set how long to wait before sending CAN messages after PXB-6020D power on initialization is completed
CANFD terminal resistor enable	Enable or disable the terminal resistance of CAN FD interface

3. Sending message configuration

PXB-6020D can send CAN or CAN FD messages in any working mode. Click on 'Send Message' in the 'Device Configuration' column of AWPX software to configure the parameters for sending messages. Whether the message sent is a CAN frame or a CAN FD frame depends on the 'CAN Type' setting in the 'Send Message' interface. The message sending interface is shown in Figure 3.10.

Figure 3.10 Message Sending Interface

Add up to 128 sent messages by clicking the 'Add+' button in the upper right corner of the interface.Click the [+Add Data] button to add variables for mapping data, with a maximum of 64 variables added per message. Can be accessed through the interface.The 'Delete' button on the right deletes the corresponding message and variable. The parameter description of the message sending interface is shown in Table 3.3.

parameter	Parameter Description
Message Name	The name of this message can be used for mnemonic purposes
Frame ID	The frame ID for sending messages can be in decimal or hexadecimal format (starting with 0x)
Frame type	The frame type for sending messages can be standard frames or extended frames
Remote frame	Whether the sent frame is a remote frame, this option is invalid when the CAN type is selected as CAN FD
CAN type	Set the type of CAN message to be sent, which can be related to the "CAN Type Selection" option. When the "CAN Type Selection" is CAN, the CAN type here can only be "CAN"; When the 'CAN Type Selection' is CAN FD, 'CAN', 'CAN FD', and 'CANED Acceleration' can be selected here.
Data length	The length of the transmission frame data segment is up to 8 bytes for CAN frames and 64 bytes for CAN FD frames
Trigger mode	The triggering mode for PXB-6020D to send CAN messages includes four modes: "periodic sending", "change sending", "single sending", and "frame ID triggering"
Trigger frame ID	The CAN message ID that triggers PXB-6020D to send CAN messages is valid when the trigger mode is selected as [Frame ID trigger]. Can be decimal or hexadecimal (starting with 0x)
Trigger frame type	The CAN message type that triggers PXB-6020D to send CAN messages is valid when the trigger mode is selected as [Frame ID trigger]
Cycle time	When the triggering mode is' periodic sending ', this parameter is the cycle time; When the triggering method is' Change Send ', this time is the cycle for checking Modbus data changes; When the triggering mode is [Single Send], this time is the waiting time for that single send
Variable Name	The name of this variable can be used for mnemonic purposes
Operation size	The size of the mapped data. Contains "Whole Frame Data", "BIT", "BYTE", "WORD", "WORD", and "QWORD". Among them: BYTE is 1 byte, WORD is 2 bytes, WORD is 4 bytes, QWORD is 8 bytes
Offset amount	Select which byte or bit of the CAN message data segment to start from, and sequentially convert the fixed data or Modbus
	Register data is mapped to CAN message data segments. When the operation size is the entire frame of data, the offset is invalid
data source	The source of the CAN message data segment includes two options: "Modbus" and "Fixed Data"
Data value	The value of the custom CAN message data segment can be decimal or hexadecimal (starting with 0x), and is valid when the data source is selected as' Fixed Data '
Modbus byte order	Modbus data storage method (big end or small end)
Register type	Supports coil, input status, input register, hold register, options related to [operation size]
From station number	When the Modbus working mode is RTU master, the user sets the corresponding RTU slave station number for the data

Table 3.3 Explanation of Message Sending Interface Parameters

PXB-60xxD

User Manual for M	odbus Protocol Uesr Manual
Register address	The sent message data is at the starting address of the device or Modbus slave's register, and the data source is selected as Valid for Modbus. Can be decimal or hexadecimal (starting with 0x)

The data segment for sending CAN/CAN FD messages on PXB-6020D can be a custom value or a Modbus register value. Custom Value: After selecting "Fixed Data" as the "Data Source" option, set the "Data Value" option. Modbus Register Value: After selecting the "Data Source" option as "Modbus", set the "Register Address".Options are sufficient. PXB-6020D will read the register data corresponding to the Modbus slave address and map the data to CAN.The data segment of the message. Finally, PXB-6020D sends CAN messages to the CAN bus.

If PXB-6020D operates in Modbus master mode, the data segment for sending CAN messages is sourced from the registers of the external Modbus slave station. If PXB-6020D is running in Modbus slave mode, the data segment for sending CAN messages comes from the Modbus register inside PXB-6020D.

The modes for triggering PXB-6020D to send CAN/CAN FD messages are:

1. Periodic sending: PXB-6020D will cyclically send CAN messages based on the cycle time.

2. Change sending: When a change in the value of the configured Modbus register is detected, PXB-6020D is triggered to send a CAN message, and the "cycle time" at this time is the Modbus detection cycle.

3. Single transmission: Send one CAN message after the device is started. This frame is sent at the time of "sending wait time+cycle time" after the device is started.

4. Frame ID trigger: When PXB-6020D receives a CAN message that matches the set **[** Trigger ID **]** and **[** Trigger Frame Type **]**, it triggers PXB-6020D to send a CAN message.

Example of message sending configuration: Set the Modbus byte order to 'small end' and perform the message sending configuration as shown in Table 3.4 Set.

Frame	Frame	Remote	CAN	Data	Trigger	Cycle	Operation size	Offset	Data	Register	Register
ID	type	frame	type	length	mode	time		amount	source	type	address
0x01	Standard frame	no	CAN	eight	Periodic sending	1000	DWORD	one	Modbus	Maintain register	0

Table 3.4 Example of Message Sending Configuration

Then PXB-6020D will start from address 0 and sequentially read the Modbus slave hold register data in the size of DWORs. Then, based on the offset of 1, starting from the first byte of the CAN message data segment, the read hold register data of the size of the WORD is sequentially mapped to the data segment of the CAN message. Finally, PXB-6020D sends the CAN message to the CAN bus.

If the corresponding Modbus slave holds register data as: 0 Address: 0x1122, 1 Address: 0x3344, then every interval 1000ms, PXB-6020D will send CAN standard frame with ID 0x01: 00 22 11 44 33 00 00 00 (hexadecimal).

4. Receive message configuration

PXB-6020D can receive CAN or CAN FD messages in any working mode. Whether the received message is a CAN frame or a CAN FD frame depends on the setting of the CAN type selection in the CAN FD parameters interface.

When receiving CAN frames, the maximum size is 8 bytes; When receiving CAN FD frames, the maximum size is 64 bytes.

Click the 'Receive Message' button in the 'Device Configuration' column of AWPX software to configure the parameters for receiving messages, as shown in Figure 3.11.

Add the messages to be received by clicking the 'Add+' button in the upper right corner of the interface, up to a maximum of 128 received messages can be added. The text. Click the [+Add Data] button to add variables for mapping data, with a maximum of 64 variables added per message. If you need to delete the received message or variable, you can use the [Delete] button on the right side of the interface to delete it. The parameter description of the received message interface is shown in Table 3.5.

parameter	Parameter Description
Message Name	The name of this message can be used for mnemonic purposes
Frame ID	The frame ID of the received message can be decimal or hexadecimal (starting with 0x)
Frame type	Is the received message a standard frame or an extended frame
Variable Name	The name of this variable can be used for mnemonic purposes
	The size of the mapped data. Contains "Whole Frame Data", "BIT", "BYTE",
Operation size	"WORD", "WORD", and "QWORD". Among them, BYTE is 1 byte, WORD is
_	2 bytes, WORD is 4 bytes, and QWORD is 8 bytes.
Offerst surgest	Select which byte or bit of the CAN message data segment to start from, and map
Oliset amount	the received CAN message data segment to the register of the Modbus slave
	station. When the operation size is the entire frame of data, the offset is invalid
Register type	Support coils and hold registers, with options related to [operation size]
From station number	When Modbus is working on the RTU master, this option is used to set the access slave ID
Modbus byte order	Modbus data storage method (big end or small end)
Desister eddaese	The received CAN message data segment is stored at the starting address of the
Register address	local or Modbus slave register, which can be decimal or hexadecimal (starting
	with 0x)

Table 3.5 Descrir	tion of Interface	Parameters for	Receiving Messages
Table 5.5 Desemp	fillen of interface	1 drameters for	Receiving Micssages

PXB-6020D will write the received CAN/CAN FD message data segment content into the register of the Modbus slave station. If PXB-6020D is running in Modbus master mode, the received CAN message data segment content will be written to the external device.Modbus slave register. If PXB-6020D is running in Modbus slave mode, the received CAN message data segment content will be written into the Modbus register inside PXB-6020D.

Example of receiving message configuration: Set the Modbus byte order to [small end] and configure the sending message as shown in Table 3.6 Set.

Frame ID	Frame type	Operation size	Offset amount	Register type	From station number	Register address
0x02	Standard frame	DWORD	2	Maintain register	one	0x10

When PXB-6020D receives a CAN standard frame with a frame ID of 0x02 and a frame data segment of 11 22 33 44 55 66 77 88 (hexadecimal), PXB-6020D will write the contents of the CAN message data segment, starting from the second byte of the CAN frame data segment, into the hold register corresponding to the Modbus slave address based on offset 2.

Namely: Write data 0x4433 to the hold register with address 0x10 and write data 0x6655 to the hold register with address 0x11 in the Modbus slave with ID 1.

5. Customize sending configuration

Click on 'Custom Send' in the 'Device Configuration' column of AWPX software to configure the parameters for custom message sending, which can be customized to send CAN or CAN FD messages. The interface is shown in Figure 3.12.

🗭 AWPX Tools					
☰ 🚱 扫描设备 🛛 🐺 保存配置	큵 获取配置	→] 导入配置	🔁 导出配置	✿ 系统设置	•
目标板 [00:14:97:0f:02:90]-192.168.1.136 - 协议转换类型		自定义发送 🌑			
PXB-6020D ~		Modbus寄存器地址 32			
Modbus设置 CANFD参数		222-94			
友选报文 接收报文					
自定义发送					

Figure 3.12 Custom Sending Interface

Among them, [Slave ID] is the Modbus Slave ID, which can be set when the working mode is Modbus RTU Master. The Modbus Register Address option is used to configure the data source for custom message sending, which is located in the hold register of the corresponding Modbus slave station.

If PXB-6020D is running in Modbus master mode, the custom data source for sending messages is in the hold register of the external Modbus slave. If PXB-6020D is running in Modbus slave mode, the custom data source for sending messages is stored in the internal hold register of PXB-6020D.

Click the 'Custom Send' button to enable custom sending, and then fill in the data format shown in Table 3.7 in the hold register corresponding to the Modbus slave address to customize the data and format of the sent message.

field	Number of	Sub item	describe
neid	registers	Sub Rein	
Transaction Number	one	/	A value greater than 0 indicates that the following data area is valid and needs to be incremented for each update sent
			When the value of this serial number reaches 65535, it can return to 1
CANID	two	/	0~28 is effective
			The lower 8 bits are defined as follows:
			B0: Value is 1: CANFD frame, otherwise it is CAN frame
Frame information	ono	identification	B1: Value 1: CANFD acceleration is turned on, otherwise CANFD acceleration is turned off
	one		B2: Value 1: Remote frame, otherwise
			it is data frame B3: Value 1: Expand the
			frame, otherwise reserve other bits for
			the standard frame
		Data length	High 8 digits
CAN/CAN FD data	32 or 4	/	When working in CAN mode, the length is 4, otherwise it is 32

Table 3.7 CAN/CAN FD Data Area Format

Example of custom sending: Enable custom sending, set [Slave Number **]** to 1, and **[** Modbus Register Address **]** to 30.

Then, in the Modbus slave with address 1, fill in the hold registers of addresses 30-37 in

Uesr Manual

sequence with 0x0001, 0x0000, 0x0123, 0x0800, 0x1122, 0x3344, 0x5566, and 0x7788. When the value of the hold register with address 30 is passed. Once added, PXB-6020D sends out a CAN standard frame with ID 0x0123 and data segment 22 11 44 33 66 55 88 77 (hexadecimal).

3.2.2 PXB-6021D Parameter Configuration

1. Modbus parameter configuration

Click on "Modbus Settings" in the "Device Configuration" column of AWPX software to configure Modbus parameters. The configuration interface is shown in Figure 3.13.

🗭 AWPX Tools						
☰ 😡 扫描设备	₹ 保存配置	➡ 获取配置	→ 导入配置	🗗 导出配置	□✿ 系统设置	*
目标板						
[00:14:97:0f:03:ff]-1	192.168.1.136	-	工作模式 <mark>Modbus</mark> RTU主站			*
协议转换类型						
PXB-6021D		•	波特率 115200			×
设备配置			数据位			-
Modb	us设置		0			
CANor	pen参数		停止位 1			-
RPD	0参数					
TPD	0参数		校验位 None			•
			终端电阻使能 使能			

Figure 3.13 Modbus Settings

PXB-6021D supports two working modes, which can be selected through the "Working Mode" drop-down list box. Each working mode has corresponding Modbus parameters, and the functional descriptions and corresponding parameter descriptions of these two working modes are shown in Table 3.8.

ruble 5.6 modeus ruhumeter Description
--

Working mode	Function Description	Configuration items	Configuration item description			
		Baud rate				
	PXB-6021D works as a	Data bits	RTU communication			
Modbus RTU master station	supports up to 255 Modbus	Stop position	parameters			
	RTU slaves	Checksum				
		Terminal resistance enable	RS485 terminal resistor enable			
Modbus TCP	PXB-6021D works as a	Slave IP address	The IP address of the only			
Master	Modbus TCP master and		ICP slave station			
	serves as a TCP client	Slave port	The unique TCP slave port number			

2. CANopen parameter configuration

In any working mode, PXB-6021D operates as a CANopen slave on the CANopen side. Click on 'CANopen Parameters' in the' Device Configuration 'column of AWPX software to configure the CANopen parameters of PXB-6021D. The configuration interface is shown in Figure 3.14.

User Manua	l for	Modbus	Protocol
------------	-------	--------	----------

	获取配置 - 予导入配置 🚽 导出配置 📑 承统设置 ▼
目标板	
[00:14:97:0f:03:ff]-192.168.1.136 •	波特率 10K
协议转换类型	
PXB-6021D 💌	节点ID 1
设备配置	CAN终端电阻使能
Modbus设置	使能
CANopen参数	
RPDO参数	
TPDO参数	

Figure 3.14 CANopen Parameters

The parameter description of CANopen is shown in Table 3.9.

	Table 3.9	CANopen	Parameter	Description
--	-----------	---------	-----------	-------------

parameter	Parameter Description
Baud rate	Set the baud rate of CAN between 10Kbps and 1Mbps
Node ID	Set PXB-6021D as the node ID for CANopen slave station, between 1 and
CAN terminal resistor enable	Enable or disable the terminal resistance of CAN interface

3. RPDO parameter configuration

After receiving the RPDO sent by the CANopen master, PXB-6021D writes the RPDO data field content into the Modbus slave register. Set the RPDO parameter for CANopen as shown in Figure 3.15.

S AWPX Tools																-		×
😑 😳 扫描设备 🛛 🐺 保存配置	i 🖬	获取配置	-→ 号入配置	🕤 sanci	n :0/	统设置	•										Â	0
目标板																添加	PDO +	-
[00:14:97:0f:03:ff]-192.168.1.136	*	θ	PDO索引	COBID	操作单元	宇节	5偏移量	位的	移量	Modbus	字节序	Modbus从站ID	Modbus	堂型	地址	操作		
协议转换类型		1	^ 1	0x201												十 添加字段	Î	NR£
PXB-6021D	*	1.1			BIT	0	-	0		大端		1	线圈状态		0		FT	NRR
设备配置																		
Modbus设置																		
CANopen参数	_																	
RPDO参数																		
TPDO参数																		

Figure 3.15 RPDO parameter interface

Click the 'Add PDO+' button to add the RPDO mapping entry that needs to be operated on. Click [+Add Field] again to add which field of this RPDO needs to be operated on, and any bit or byte field of this RPDO can be operated on.

On the far right side of the entry, click the [Delete] button to delete the entry. Up to 80 RPDOs can be added, and each RPDO can add up to 16 fields.

The RPDO parameter settings for CANopen are shown in Table 3.10.

Table 3.10 RPDO	parameter sett	tings for C	CANopen
-----------------	----------------	-------------	---------

parameter	Parameter Description
PDO index	Set PDO mapping index between 1-80
COBID	Set the communication object number of PDO (the message frame ID of this communication object)
Operation unit	The size of the mapped data. BYTE: 1 byte, WORD: 2 bytes, DWORD: 4 bytes, QWORD: 8 bytes.
	8 bytes
Byte offset	Set the byte offset of PDO between 0-7 (choose which byte of PDO to start mapping data from)
Positional offset	The bit offset after setting the byte offset of PDO (selecting which byte and bit of PDO
	to start mapping data from) is valid when the operation unit is BIT
	BYTE, WORD, or WORD. For example:
	When the operating unit is BYTE, the RPDO data for
	CANopen is 0x10: Big end mode: Modbus register data
	mapped to 0x0010 Small end mode: Modbus register data
	mapped to 0x1000
Modbus byte order	
, , , , , , , , , , , , , , , , , , ,	When the operating unit is WORD, the RPDO data for CANopen is
	0x10, 0x20: Big end mode: Modbus register data mapped to 0x2010
	Small end mode: Modbus register data mapped to 0x1020
	When the operation unit is a WORD, the RPDO data for CANopen is $0x10$, $0x20$
	0x30 0x40. Big end mode: Modbus register data mapping to 0x4030 0x2010
	Small end mode: Modbus register data mapping to 0x3040, 0x1020
Modbus Slave ID	Set Modbus Slave ID
Wiodous Slave ID	
Modbus type	Modbus register type. When the operating unit is BIT, the Modbus type can select coll state, and when it is other operating units, the Modbus type can select hold register
address	Update RPDO data to Modbus slave register address, decimal or hexadecimal (starting with 0x)

4. TPDO parameter configuration

After reading the data from the corresponding address register of the Modbus slave station, PXB-6021D maps the read Modbus register data to the TPDO data field and sends it to the CANopen master station. Set the TPDO parameters for CANopen as shown in Figure 3.16.

₿ A	WPX Tools																				-6		×
≡	◎ 扫描设备	∓:保存配置	5	获取配置	- → ⇒入配置	• 合用的基本		5 -														× _A	0
目标	板																			1	质加PD	o +	
[0	0:14:97:0f:03:f4]-1	92.168.1.136	•		PDO索引	PDO同步周期(ms)	COBID	操作单	元	宇节的	解释量	位偏	移量	Modbus	字节序	Modbus从站ID	Modbus	業型	地址		操作		
协议	转换类型			1	^ 1	1000	0x181													十 添加	字段		騛
PX	B-6021D		*	1.1				BIT		0	*	0	*	大端	*	1	线圈状态	-	10				urs:
设备	配置																						
	Modbu CANop RPDC	us设置 en参数)参数																					
	TPDC	多数																					

Figure 3.16 TPDO parameter interface

Like the RPDO parameter settings, click the [Add PDO+] button to add the TPDO mapping entry that needs to be operated on. Then click the [+Add Field] button to add which field of this TPDO needs to be operated on, and any bit or byte field of this TPDO can be operated on.

On the far right side of the entry, click the [Delete] button to delete the entry. Up to 80 TPDOs can be added, and each TPDO can add up to 16 fields.

The TPDO parameter settings for CANopen are shown in Table 3.11.

Table 3.11	TPDO	parameter	settings	for	CANoper
10010 0.11		parameter	seemgo		er in top en

parameter	Parameter Description
PDO index	Set PDO mapping index between 1-80
PDO synchronization period	Set the time interval in milliseconds between each update of Modbus slave register data to TPDO
COBID	Set the communication object number of PDO (the message frame ID of this communication object)
Operation unit	The size of the mapped data. BYTE: 1 byte, WORD: 2 bytes, DWORD: 4 bytes, QWORD: 8 bytes
Byte offset	Set the byte offset of PDO between 0-7 (choose which byte of PDO to start mapping data from)
Desitional offect	The bit offset after setting the byte offset of PDO (selecting which byte and bit of PDO to
Positional offset	start mapping data from) is valid when the operation unit is BIT
	Set the Modbus big and small end mode, and this field is valid when the operating unit is
	BYTE, WORD, or WORD. For example:
	When the operating unit is BYTE, the Modbus register data
	is 0x10: Big end mode: The TPDO data of CANopen is
	mapped to 0x10. Small end mode: The TPDO data of
	CANopen is mapped to 0x00
Modbus byte order	
	When the operating unit is WORD, the Modbus register data
	is 0x1020: Big end mode: The TPDO data of CANopen is
	mapped to 0x20, 0x10 Small end mode: The TPDO data of
	CANopen is mapped to 0x10, 0x20
	When the operating unit is a WORD, the Modbus register data is 0x1020,
	0x3040: Big end mode: The TPDO data mapping for CANopen is 0x10,
	0x30, 0x20, 0x10. Small end mode: The TPDO data mapping for
	CANopen is 0x10, 0x20, 0x30, 0x40
Modbus Slave ID	Set Modbus Slave ID
Modbus type	Modbus register type. When the operating unit is BIT, the Modbus type can be selected as
woodbus type	either coil state or input state. When used for other operating units, the Modbus type can
	choose to hold registers or input registers
address	Update Modbus register data to the register address of TPDO. Decimal or hexadecimal (starting with 0x)

3.2.3 PXB-6021DM Parameter Configuration

1. Modbus parameter configuration

Click on "Modbus Settings" in the "Device Configuration" column of AWPX software to configure Modbus parameters. The configuration interface is shown in Figure 3.17.

⊙ 扫描设备 🛛 幕 保存配置	异 获取配置	🛃 导入配置	- ○ 号出配置	급 系统设置	-
际板					
		工作模式 Modbus <mark>RTU主站</mark>			*
议转换类型					
PXB-6021DM -		波特率 115200			*
备配置		数据位			
Modbus设置		8			*
CANopen主站配置		停止位 1			*
CANopen从站列表					
		校验位 None			•
		从机ID 1			
		终端电阻使能 使能			•
		字节序 大端			•

Figure 3.17 Modbus parameter settings

PXB-6021DM supports four working modes, which can be selected through the "Working Mode" drop-down list box. The functional descriptions and corresponding parameter descriptions of these four working modes are shown in Table 3.12.

Table 3.12 Modbus Parameter Description

Working mode	Function Description	Configuration items	Configuration item description	
		Baud rate		
		Data bits	RTU communication parameters	
Modbus RTU master	PXB-6021DM operates as a Modbus RTU master station	Stop position Checksum		
	connected to a unique Modbus	Slave ID	Unique external slave ID	
	RTU slave station	Terminal resistance	RS485 terminal resistor enable	
		Byte order	Modbus data storage method	
Modbus RTU slave station		Baud rate		
	PXB-6021DM works as a Modbus RTU slave, and the external Modbus RTU master can read and write the PXB-	Data bits	RTU communication parameters	
		Stop position		
		Checksum		
	6021DM register	Local slave ID	PXB-6021DM as the ID of the slave station	
			RS485 terminal resistor enable	
		Byte order	Modbus data storage method	

PXB-60xxD User Manual for Modbus Protocol

Uesr Manual

Madhua TCD Mastar	Modbus TCP Master PXB-6021DM operates as a Modbus TCP master and serves as a TCP client	Slave IP address	The IP address of the only TCP slave station
Modbus TCP Master		Slave port number	The unique TCP slave port number
		Peer slave number	Unique TCP slave ID
		Byte order	Modbus data storage method

Working mode	Function Description	Configuration items	Configuration item description
Modbus TCP Slave	PXB-6021DM operates on Modbus	Local port number	PXB-6021DM serves as the port number for the slave station
	TCP slave, acting as a TCP server.	Local slave number	PXB-6021DM as the ID of the slave station
	external Models TCP master readable and writable PXB-6021DM Register	Byte order	Modbus data storage method

Continued

2. CANopen parameter settings

PXB-6021DM operates in CANopen master mode on both sides. Simply click on 'CANopen Master Station Configuration' in the 'Device Configuration' column of the AWPX software to configure the PXB-6021DM master station parameters. The configuration interface is shown in Figure 3.18.

S AWPA TOOIS	
😡 扫描设备 🛛 🖬 保存配置 🛛 🖬	決取配置 于 导入配置 于 导出配置 📪 系统设置 ▼
标板	
[00:14:97:5f:15:2b]-192.168.1.136 •	节点ID 127
议转换类型	
PXB-6021DM	波特率 250K
设备配置	同步报文ID
Modbus设置	0X80000080
CANopen主站配置	同步周期 (ms)
CANopen从站列表	5000
	髮迈启动时间 (ms) 1000
	NMT寄存器地址 127
	CAN终端电阻使能 基部

Figure 3.18 CANopen Master Station Parameters

The CANopen master station parameters are described in Table 3.13.

Table 3.13 CANopen Master Station Parameter Description

	parameter	Parameter Description
	Node ID	Set PXB-6021DM as the CANopen network node ID between 1 and 127
	Baud rate	Set the baud rate of the CAN bus between 10Kbps and 1Mbps
	Synchronize message ID	Default is 0x80000080 (hexadecimal needs to be prefixed with 0x, otherwise it is decimal)
	Synchronization period	Default is 0 (0~65535) ms
	Delay start time	Is the main station delayed in starting (0~2147483647) ms
		Modbus can control the status of CANopen nodes by modifying registers, with register values up to eight digits high
		For CMD, the lower eight bits represent the Node Node-ID. CMD enumeration includes:
	NMT register address	0x01=Node enters operational state; 0x02=Node enters a stopped state
		0x80=Node enters pre operation state; 0x81=Reset application layer
Ζ	2LGi	© 2024 Guangzhou ZHIYUAN Electronics Co

PXB-60xxD

User Manual for Modbus Protocol

	0x82=Reset node communication; If ID=0, it means all nodes
CAN terminal resistor enable	Enable or disable the terminal resistance of CAN interface

3. CANopen Slave List

Complete the configuration of CANopen nodes from the list of slave stations. Click on "Add Slave Station" or "Delete Slave Station" to add or delete the current slave station. The interface is shown in Figure 3.19.

😢 AWPX Tools				
😑 🝳 扫描设备 🛛 🐺 保祥	宇配置 🛛 📻 获取配置	→ 导入配置	🗗 导出配置	系统设置 ▼
目标板				
[00:14:97:5f:15:2b]-192.168.1	.136 🔻			
协议转换类型				
PXB-6021DM	-			
设备配置				
Modbus设置				
CANopen主站配置				
CANopen从站列表				
添加从站 十	删除从站			

Figure 3.19 CANopen Slave List Interface

4. CANopen Slave Properties

Click on 'Add Slave' to display the Slave Configuration interface, which is used to configure the relevant attribute information of the slave. The interface is shown in Figure 3.20.As shown.

目标板 [00:14:97:5f:15:2b]-192.168.1.136 ▼	从站名称 从站 <u>1</u>
协议转换类型	
PXB-6021DM 👻	节点ID 1
设备配置	些测模式 节点守护模式 ▼
ModoUS改直 CANopen主站配置 CANopen上站起置	监测周嗣 (ms) 1000
添加从站 十	监测因子 3
▼ □ 从站_1 SDO参数 	节点状态音存器地址 0
TPDO参数	

Figure 3.20 CANopen Slave Attribute Interface

The definition of its setting parameters is as follows:

parameter	Parameter Description		
Station name	From station name, user-defined		
Node ID	Slave node ID (1~127)		
Monitoring mode	Slave node online monitoring mode, default to heartbeat protocol		
Monitoring cycle	Default 1000 (0~65535) ms		
Monitoring factors	Only valid when the detection mode is node guarding		
	Mapping CANopen network node status to Modbus registers,		
	0x01 indicates that the node is offline,		
Node Status Register	0x04 indicates that the node is in a stopped state,		
	0x05 indicates that the node is in working state (online),		
	0x7F indicates that the node is in a pre operation state		

Table 3.14 CANopen Slave Parameter Description

5. SDO parameters

SDO parameters are used to configure the initialization startup parameters of the slave station. By selecting the data source, the node dictionary content can be flexibly modified to meet the different usage scenarios of CANopen network adaptation. The interface is shown in Figure 3.21:

Figure 3.21 SDO Parameter Interface

The definition of its setting parameters is as follows:

Table 3.15 SDO Parameter Description

parameter	Parameter Description
Main index	Slave dictionary master index
Secondary Index	Slave dictionary index
describe	User defined description content for mnemonic purposes
SDO fast transfer mode	Upload or download
data source	Fixed value or Modbus register
data size	The maximum data size for this SDO fast transfer is four bytes
Fixed data value	Effective when the data source is a fixed value (Hexadecimal requires a prefix of 0x, otherwise it is decimal)
Modbus register address	Effective when the data source is Modbus (Hexadecimal requires a prefix of 0x, otherwise it is decimal)

6. RPDO parameters

RPDO parameters are used to configure the RPDO parameters of the slave station and the mapping rules between Modbus data and CANopen network. The interface is shown in Figure 3.22:

AWPX Tools														- 0
😑 😋 扫描设备 🏻 🏹	保存配置	: → 获取配	a -{	日 日本	🕤 导出配置	□ 系统设置	•							ネ
目标板		R	PDO											添加 十
[00:14:97:5f:15:2b]-192.10	68.1.136	• #		PDO索引	PDO同步周期 (ms)	COBID	映射描述	操作单元	字节偏移量	位偏移量	数据源	Modbus寄存器类型	Modbus否存器地址	固定值
协议转换类型		1	~	1	1000	0x00000201								
PXB-6021DM		- 2	~	2	1000	0x00000202								
设备配置			-											
Modbus设置	1													
CANopen主站	尼置													
CANopen从站到	网表													
添加从站 十	■ 删除从	48												
▼ □ 从站 1														
SDO参数														
RPDO参数														
TPDO参数														

Figure 3.22 RPDO parameter interface

The definition of its setting parameters is as follows:

Table 3.16 RPDO	Parameter	Description
-----------------	-----------	-------------

parameter	Parameter Description
	The RPDO communication object from the station dictionary is offset based on
PDO index	the 0X1400 primary index. The interface configuration value will be reduced by 1
	during actual transmission. When the PDO index is configured as 1, the actual
	modified parameters are: $0X1400 + pdo_index - 1 = 0X1400$
PDO synchronization period	Modbus to CANopen network data mapping cycle (0~65535) ms
COBID	COBID of the slave station (hexadecimal needs to be prefixed with 0x, otherwise i is decimal)
Mapping description	Used to describe the mapping function, user-defined
	Describe the size of the data range mapped from a CAN message to Modbus. There are five options: BIT, BYTE, WORD, WORD, and QWORD. When the
Operation unit	mapping data size exceeds one Modbus register data size, that is, when the current configuration is DWORD or QWORD, the device will automatically expand the
	register range to adapt to this mapping.
	For example, if the current configuration is a WORD and the Modbus register address is 20000, then Modbus's 20000
	The data at the 20001 register address will be mapped to the corresponding CAN
Byte offset	The starting byte offset of the Modbus register mapping to the CAN frame (eight bytes) this time
Positional offset	BIT offset within one byte, only effective when the operating unit is BIT
data source	Fixed value or Modbus network
Modbus register address	Modbus register address (hexadecimal needs to be prefixed with 0x, otherwise it is decimal)
Modbus Register Types	Modbus register type (hexadecimal needs to be prefixed with 0x, otherwise it is decimal)
Fixed value	Specific fixed values (hexadecimal needs to be prefixed
	with 0x, otherwise decimal) are transmitted in small endian
	byte order and mapping rules over the CANopen network
LG	© 2024 Guangzhou ZHIYUAN Electronics C

Table 3.17 shows the actual data mapped from Modbus to CANopen network: The mapping rule is described as: byte offset is 0, bit offset is 0.

Operation unit	Modbus register values	CAN message data
BIT	one	Can[0] = 0x01;
BYTE	0x0001	$\operatorname{Can}[0] = 0x01;$
WORD	0x0102	Can[0] = 0x02; Can[1] = 0x01;
DWORD	0x0102 0x0304	Can[0] = 0x02; Can[1] = 0x01;
DWORD	070102,070304	Can[2] = 0x04; Can[3] = 0x03;
		Can[0] = 0x02; Can[1] = 0x01;
OWORD	0x0102,0x0304	Can[2] = 0x04; Can[3] = 0x03;
	0x0506,0x0708	Can[4] = 0x06; Can[5] = 0x05;
		Can[6] = 0x08; Can[7] = 0x07;

Note: PXB-6021DM converts the values in Modbus registers to the small end byte order of CANopen network. When the data source is a fixed value, the same applies.

7. TPDO parameters

TPDO parameters are used to configure the TPDO parameters of the slave station and the mapping rules between Modbus data and CANopen network. The interface is shown in Figure 3.23:

S AWPX Tools													-		×
😑 🞯 扫描设备 🐺 保存配置	:↑ 获取配置	-) 9	入配置 🔁 导出	NET :0	系统设置 ▼									×4 (?	D
目标板	TP	DO												添加 十	
[00:14:97:5f:15:2b]-192.168.1.136 *		PDO索引	PDO同步周期 (ms)	COBID	TPDO传输方式		同步因子	抑制时间 (ms)	映射描述	操作单	元	字节的	刷修量	位偏移量	
协议转换类型	^	1	1000	0x00000181	异步,设备子协议特定事件	-	3	0							
PXB-6021DM *									None	WORD	*	0	*	0 -	
设备配置															
Modbusi设置															
CANopen主站配置															
CANopen从站列表															
添加从站 十 📄 删除从站															
▼ □ 从站_1															
—— SDO参数															
RPDO参数 - TPDO参数															

The definition of its setting parameters is as follows:

parameter	Parameter Description
PDO index	The TPDO communication object of the substation dictionary is offset based on the 0X1800 primary index. The interface configuration value will be reduced by 1 during actual transmission. When the PDO index is configured as 1, the actual modified parameters are: $0X1800 + pdo_index - 1 = 0X1800$
PDO synchronization period	CANopen to Modbus network data mapping cycle
COBID	COBIND from the slave station (hexadecimal needs to be prefixed with 0x, otherwise it is decimal)
TPDO transmission method	Default is asynchronous transmission
Synchronization factor	Only effective when the transmission method is configured as synchronous cycle (1-240)
Inhibition time	Minimum interval between sending two TPDO messages (0~65535) ms
Mapping description	Used to describe the mapping function, user-defined
Operation unit	Describe the size of the data range mapped from a CAN message to Modbus. There are five types of enumeration: BIT, BYTE, WORD, WORD, and QWORD. When the mapping data size exceeds the size of a Modbus register data, that is, when the current configuration is in DWORD or QWORD, the device will automatically expand the register range to adapt to this mapping. For example, the current configuration is set to WORD, and the Modbus register address is 20000,
Byte offset	The starting offset of the Modbus register mapping to the CAN frame (8 bytes) this time
Positional offset	BIT offset within one byte, only effective when the operating unit is BIT
data source	Fixed value or Modbus network
Modbus register address	Modbus register address (hexadecimal needs to be prefixed with 0x, otherwise it is decimal)
Modbus Register Types	Modbus Register Types
Fixed value	Specific fixed values (hexadecimal needs to be prefixed with 0x, otherwise it is decimal), transmit data in Modbus network according to the configured byte order

Table 3.19 shows the actual mapping of CANopen network to Modbus: The byte offset is 0 and the bit offset is 0;

Table 3.19 TPDO Mapping Table

Operation unit	CAN message data	Modbus register values
BIT	Can[0] = 0x01;	one
BYTE	Can[0] = 0x01;	0x0001
WORD	Can[0] = 0x01; Can[1] = 0x02;	0x0201
DWORD	Can[0] = 0x01; Can[1] = 0x02;	0x0201,0x0403
	Can[2] = 0x03; Can[3] = 0x04;	

PXB-60xxD User Manual for Modbus Protocol

User Manual for Mode	bus Protocol	Uesr Manual
QWORD	Can[0] = 0x01; Can[1] = 0x02; Can[2] = 0x03; Can[3] = 0x04; Can[4] = 0x05; Can[5] = 0x06; Can[6] = 0x07; Can[7] = 0x08;	0x0201,0x0304 0x0605,0x0807

Note: PXB-6021DM converts the small end byte order of CANopen network to the value of Modbus register. The specific byte order transmitted on the Modbus side depends on the byte order configured on the Modbus parameter configuration interface.

3.2.4 PXB-6022D Parameter Configuration

1. Modbus parameter configuration

Click on "Modbus Settings" in the "Device Configuration" column of AWPX software to configure Modbus parameters. The configuration interface is shown in Figure 3.24.

😡 扫描设备 🛛 🐺 保存配置 🔤 获	取配置 - 🕤 导入配置 🚽 导出配置	系统设置 ▼
标板		
[00:14:97:0f:01:ff]-192.168.1.136 •	工作模式 Modbus RTU主站	*
议转换类型		
PXB-6022D -	波特率 115200	*
2备配置	数据位 8	•
Modbus设置		
DeviceNet参数 DeviceNet输入缓存	停止位 1	*
DeviceNet输出缓存	校验位 None	•
	终端电阻使能 使能	*

Figure 3.24 Modbus parameter settings

PXB-6022D supports two working modes, which can be selected through the "Working Mode" drop-down list box. Each working mode has corresponding Modbus parameters, and the functional descriptions and corresponding parameter descriptions of these two working modes are shown in Table 3.20.

ruble 5.20 modeus ruhumeter Desemption
--

Working mode	Function Description	Configuration items	Configuration item description
Modbus RTU master station	PXB-6022D works as a Modbus RTU master and supports up to 255 Modbus RTU slaves	Baud rate Data bits Stop position Checksum	RTU communication parameters
		Terminal resistance enable	RS485 terminal resistor enable
Modbus TCP Master	PXB-6022D works as a Modbus TCP master and	Slave IP address	The IP address of the only TCP slave station
	serves as a TCP client	Slave port number	The unique TCP slave port number

2. DeviceNet parameter configuration

Click on 'DeviceNet Parameters' in the' Device Configuration 'column of AWPX software to configure the DeviceNet parameters. The configuration interface is shown in Figure 3.25.

PXB-60xxD User Manual for Modbus Protocol

王 😡 扫描设备 🛛 幕 保存配置 🖙 教	短配置 🕣 导入配置 🚽 导出配置 📪 系統	设置 ▼
标板		
[00:14:97:0f:01:ff]-192.168.1.136 •	波特率 500K	•
议转换类型		
PXB-6022D 👻	从站口 1	
全备配置	DeviceNet输入缓存大小	
Modbus设置	8	×
DeviceNet参数	DeviceNet输出缓存大小	÷
DeviceNet输入缓存	0	
DeviceNet输出缓存	数据更新间隔(ms) 12	
	CAN终端电阻使能 使能	*

Figure 3.25 DeviceNet parameter interface

The parameter description of DeviceNet is shown in Table 3.21.

Table 3.21 Description of DeviceNet Parameters

parameter	Parameter Description
Baud rate	Set the CAN baud rate of PXB-6022D
Slave ID	Set PXB-6022D as the ID of DeviceNet slave station
DeviceNet input cache size	Set the maximum data size that PXB-6022D can receive at a time, in bytes
DeviceNet output cache size	Set the maximum data size that PXB-6022D can send at a time, in bytes
Data update interval	Synchronization interval between Modbus data and DeviceNet data. The smaller the value, the better the real-time performance. The smaller the
	value, the higher the performance requirements for Modbus bus, which can
	be filled in according to real-time needs
CAN terminal resistor enable	Enable or disable the terminal resistance of CAN interface

3. DeviceNet input cache configuration

ZLG

The DeviceNet input cache stores the data transmitted from the DeviceNet master station to PXB-6022D, which then processes it.DeviceNet input cache is written to Modbus slave registers. The DeviceNet input cache configuration interface is shown in Figure 3.26.

Add a mapping entry by clicking the 'Add+' button in the upper right corner of the interface, and then edit the mapping parameters. On the far right side of the entry, click the [Delete] button to delete the mapping entry. A maximum of 128 mapping entries can be added. DeviceNet The parameter description for input cache configuration is shown in Table 3.22.

parameter	Parameter Description
Operation unit	The size of the mapped data. BYTE: 1 byte, WORD: 2 bytes, DWORD: 4 bytes, QWORD:
	8 bytes
Byte offset	Set which byte of DeviceNet input cache to start mapping data from
Positional offset	The bit offset after byte offset, set which bit in the DeviceNet input cache to start mapping data from
	Set the Modbus big and small end mode, and this field is valid when the operating unit is BYTE, WORD, or WORD. For example:
Modbus byte order	When the operating unit is BYTE, the input data of
	DeviceNet is 0x10: Big end mode: Modbus register data
	mapped to 0x1000 Small end mode: Modbus register data
	mapped to 0x0010
Modbus Slave ID	Set Modbus Slave ID
Ma dhua tara a	Set Modbus register type. When the operating unit is BIT, the Modbus type can select
Modbus type	coil state. When the operating unit is other, the Modbus type can select hold register
address	Set Modbus register address, which can be decimal or hexadecimal (starting with 0x)

Table 3.22 Explanation of DeviceNet Input Cache Configuration Parameters

4. DeviceNet output cache configuration

PXB-6022D maps the read Modbus slave register data to the DeviceNet output cache, and then sends the DeviceNet output cache to the DeviceNet master station. The DeviceNet output cache configuration interface is shown in Figure 3.27.

B AWPX Tools															-		×
三 🛛 扫描设备	i ∓:保存配置	:+	获取配置	Ð	导入配置	[] 등#	配置		设置 🔻							荪	0
目标板																添加 十	1
[00:14:97:0f:01:f	f]-192.168.1.136	•	н	操作	单元	字节偏移量		位偏移量	Modbu	s字节序	Modbus从站ID	Modbus类	種	地址	5	操作	
协议转换类型			1	BYTE	*	0	0	*	大端	*	1	保持寄存器	*	10		■ 删除	
PXB-6022D		•															
设备配置																	
Ma	odbus设置																
Dev	riceNet参数																
Device	eNet输入缓存																
Device	eNet输出缓存																

Figure 3.27 DeviceNet Output Cache Configuration Interface

Add a mapping entry by clicking the 'Add+' button in the upper right corner of the interface, and then edit the mapping parameters. On the far right side of the entry, click the [Delete] button to delete the mapping entry. A maximum of 128 mapping entries can be added. DeviceNet The parameter description of the output cache configuration is shown in Table 3.23.

parameter	Parameter Description
Operation unit	The size of the mapped data. BYTE: 1 byte, WORD: 2 bytes, DWORD: 4 bytes, QWORD:
	8 bytes
Byte offset	Set which byte of DeviceNet output cache to start mapping data from
Positional offset	Bit offset after byte offset, set which bit of DeviceNet output cache to start mapping data from
	Set the Modbus big and small end mode, and this field is valid when the operating unit is BYTE, WORD, or WORD.
Madhua huta ardar	For example:
Wiodous byte bider	When the operating unit is BYTE, the Modbus register
	data is 0x10: Big end mode: DeviceNet's output data is
	mapped to 0x00 Small end mode: DeviceNet's output
	data is mapped to 0x10
Modbus Slave ID	Set Modbus Slave ID
Madhaartanaa	Modbus register type. When the operating unit is BIT, the Modbus type can be
Modbus type	selected as either coil state or input state. When used for other operating units, the
	Modbus type can choose to hold registers or input registers
address	Set Modbus register address, which can be decimal or hexadecimal (starting with 0x)

Table 3.23 Explanation of DeviceNet Output Cache Configuration Parameters

3.2.5 PXB-6022DM Parameter Configuration

1. Modbus parameter configuration

Click on "Modbus Settings" in the "Device Configuration" column of AWPX software to configure Modbus parameters. The configuration interface is shown in Figure 3.28.

🗉 😡 扫描设备 🛛 🖬 f	保存配置	□ 获取面	置 🚽 导入配置	€] 导出配置	□ 森 系统设置	-
标板						
[00:14:97:0f:03:ff]-192.168.	.1.136	•	工作模式 Modbus <mark>RTU主站</mark>			-
议转换类型						
PXB-6022DM		•	波特率 115200			Ŧ
後备配置			数据位			
Modbus设置			8			
DeviceNet主站参	黝		停止位			*
DeviceNet从站列	表		1			
			校验位 None			•
			从机D 1			
			字节序 小端			¥
			终端电阻使能			•

Figure 3.28 Modbus parameter settings

PXB-6022DM supports four working modes, which can be selected through the "Working Mode" drop-down list box. The functional descriptions and corresponding parameter descriptions of these four working modes are shown in Table 3.24.

Working mode	Function Description	Configuration items	Configuration item description
		Baud rate	
		Data bits	RTU communication parameters
	PXB-6022DM operates as a	Stop position	, A
master station	and can be externally $\frac{1}{2}$	Checksum	
	connected to a unique Modbus	Slave ID	The ID of the external unique slave station
	RIU slave station	Byte order	Modbus data storage method
		Terminal resistance enable	RS485 terminal resistor enable
		Baud rate	
	PXB-6022DM works as a	Data bits	RTU communication parameters
Modbus RTU slave station	Modbus RTU slave, with 2400	Stop position	*
	built-in coils, input status, input	Checksum	
	registers, and hold registers, all with addresses ranging from 0 to	Local slave ID	PXB-6022DM as the ID of the slave station
	2399	Byte order	Modbus data storage method
		Terminal resistance enable	RS485 terminal resistor enable
		Slave IP address	The IP address of the only TCP slave station
Modbus TCP Master	PXB-6022DM operates as a Modbus TCP master and	Slave port number	The unique TCP slave port number
	serves as a TCP client	Peer slave number	Unique TCP slave ID
		Byte order	Modbus data storage method
	PXB-6022DM operates as a Modbus TCP slave and serves as	Local port number	PXB-6022DM serves as the port number for the slave station
Modbus TCP Slave	a TCP server. 2400 built-in coils, input status, input registers, and	Local slave number	PXB-6022DM as the ID of the slave station
	hold registers, with addresses ranging from 0 to 2399	Byte order	Modbus data storage method

Table 3.24 Modbus Parameter Description

2. DeviceNet master station parameter configuration

Click on 'DeviceNet Master Station Parameters' in the' Device Configuration 'column of the AWPX software to configure the relevant parameters of the DeviceNet master station. The configuration interface is shown in Figure 3.29.

PXB-60xxD

User Manual for Modbus Protocol

Uesr Manual

😑 😡 扫描设备 🛛 🐺 保存	配置	☶ 获取配置	🛃 导入配置	→ 日日前置 →	□ 森 系统设置	•
1标板						
[00:14:97:5f:15:2b]-192.168.1.	136 🔻		波特率 500K			
协议转换类型						
PXB-6022DM	•		主站MAC ID 0			
设备配置			内部扫描延时(ms)			
Modbus设置			10			
DeviceNet主站参数			期待报文时间(ms)			
DeviceNet从站列表			/5			
			CAN终端电阻使能 使能			

Figure 3.29 DeviceNet Master Station Parameter Interface

The parameter description of DeviceNet master station is shown in Table 3.25.

parameter	Parameter Description
Baud rate	CAN baud rate of PXB-6022DM
Main station MAC ID	PXB-6022DM serves as the device address for the DeviceNet master station
	The internal scanning delay is the minimum time allowed for external
Internal scanning delay	devices to access the network after continuous I/O scanning by the
	scanner. If the value is too high, it will cause a longer network scan,
	which will affect the execution of input and output. If the value is too
	small, it will slow down the scanner module's response to external
	devices
Expected message time	Expecting message rate, determining the timeout time for bit gating and polling messages
CAN terminal resistor enable	Enable or disable the terminal resistance of CAN interface

Table 3.25 Description	of DeviceNet Master	Station Parameters
------------------------	---------------------	--------------------

3. DeviceNet Slave List Configuration

Click on 'DeviceNet Slave List' in the 'Device Configuration' column of AWPX software to manage DeviceNet slaves and configure their related parameters. The configuration interface is shown in Figure 3.30.

S AWPX Tools			-		×
☰ 😳 扫描设备 📪 保存配置 📪 获取配	置 🕣 导入配置 🚽 导出配置 📪 系统设置 🔻			ネ	0
目标板					
[00:14:97:0f:03:ff]-192.168.1.136 *	从站名称 从站_1				
协议转换类型					
PXB-6022DM -	AshMAC ID 1				
设备配置	DeviceNet从站状态地址				
Modbus设置	保持寄存器 VX0				
DeviceNet主站参数	数据更新问题(ms) 1000				
	□ 状态改変 □ 周期 協入億沖区大小(Byte) 8	☐ 位选通 输入继冲区大小(Byte) 8			
 输出列表 输入列表 	输出缓冲区大小 (Byte) 1	1 to 25			
	应答通时间 (ms) 16	・モレジ 输入缓冲区大小(Byte) 8			
	循环时间 (ms) 1000	输出缓冲区大小 (Byte) 8			
	报文生产时间 (ms)				

Figure 3.30 Slave Station List Interface

On the left side of this interface, DeviceNet slaves can be managed. Click the 'Add Slave+' button to create a new DeviceNet slave that needs to be connected. Click the 'Delete Slave' button to delete the corresponding DeviceNet slave.

Click on the name of the corresponding DeviceNet slave to edit parameters such as the name © 2024 Guangzhou ZHIYUAN Electronics Co.,

PXB-60xxD User Manual for Modbus Protocol

Uesr Manual

and MAC ID of the corresponding DeviceNet slave on the right side of the interface. The parameter description of DeviceNet slave list is shown in Table 3.26.

parameter	Parameter Description
Station name	The name of this DeviceNet slave can be used for mnemonic purposes
Slave MAC ID	The device address of this DeviceNet slave station
DeviceNet slave status address	Note that the DeviceNet slave status value should not overlap with the register address of the mapping data when holding the register or input register address
Data update interval	Modbus data and DeviceNet synchronization interval. The smaller the value, the better the real-time performance. The smaller the value, the higher the performance requirements for Modbus bus, which can be filled in according to
	real-time needs

Table 3.26 Parameter Description of DeviceNet Slave List

The state of DeviceNet slave during runtime is reflected by the state value of the DeviceNet slave, which can be selected to be reflected at the address corresponding to the hold register or input register.

If PXB-6022DM is running in Modbus master mode, the hold register can be selected to write the status value of DeviceNet slave to the hold register corresponding to the address of the connected Modbus slave.

If PXB-6022DM is running in Modbus slave mode, it can choose to hold registers or input registers, which will Write the status value of DeviceNet slave to the hold register or input register of the corresponding address of PXB-6022DM itself.

The status values of DeviceNet slave stations are shown in Table 3.27

Status value (decimal)	Description of Status Values
0	No errors
fifty-seven	Other undefined internal errors
sixty-one	The sub station does not exist
sixty-two	Sending data failed
sixty-three	no data
sixty-six	The main station is not online
sixty-seven	Connection does not exist
seventy-two	The device stops communicating
seventy-seven	Data length mismatch
seventy-eight	The device is in the scanning list but has not responded
eighty-four	The device has not been initialized (main station status)
eighty-six	The device enters an idle state on its own

Table 3.27 Description of DeviceNet Slave Status Values

1. I/O connection type

Below the 'Data Update Interval' parameter, you can select the I/O connection type, which includes four types: bit select, polling, state change, and cycle. Each DeviceNet slave station must select at least one I/O connection type and a maximum of three I/O connection types. State change and cycle cannot be selected simultaneously.

Bit gating: The bit gating method requires configuring the input buffer size of the DeviceNet slave station, which can be configured to be 1-64Byte; Polling: The polling method requires configuring the input and output buffer sizes of DeviceNet slave stations. The configurable sizes

Uesr Manual

are:1~64Byte;

When selecting the status change type, the interface is shown in Figure 3.31.

🔽 状态改变 🗌 周期	
输入缓冲区大小 (Byte) 8	
编出缓冲区大小(Byte) 1	
应答超时时间 (ms) 1 6	
心跳报文时间 (ms) 1000	
报文生产时间 (ms) 1	

Figure 3.31 Mode of State Change

The parameter description of this interface is shown in Table 3.28.

parameter	Parameter Description
Input buffer size	The maximum size of I/O data that can be input to this DeviceNet slave station at a time, ranging from 1 to 64 bytes
Output buffer size	The maximum I/O data size that this DeviceNet slave can output at a time, ranging from 1 to 64 bytes
Response timeout	The time from sending a message to receiving a response from the DeviceNet master station when the DeviceNet slave station status changes
Heartbeat message time	The interval between when DeviceNet sends heartbeat messages from the slave station. When using the state change mode, the heartbeat message can query the device status at regular intervals to prevent DeviceNet from disconnecting from the slave station
Message production time	The time for generating DeviceNet slave messages should be less than the time for heartbeat messages

When selecting the cycle type, the interface is shown in Figure 3.32.

🗌 状态改变 🔽	周期
输入缓冲区大小 (Byte) 8	
输出缓冲区大小 (Byte)	
1	
应答超时时间 (ms)	
16	
循环时间 (ms)	
1000	
报文生产时间 (ms)	
1	

Figure 3.32 Periodic Mode

The parameter description of this interface is shown in Table 3.29.

	-
parameter	Parameter Description
Input buffer size	The maximum size of I/O data that can be input to this DeviceNet slave station at a time, ranging from 1 to 64 bytes
Output buffer size	The maximum I/O data size that this DeviceNet slave can output at a time, ranging from 1 to 64 bytes
Response timeout	The time from sending a message from the DeviceNet slave station to receiving a response from the DeviceNet master station
Cycle time	The time interval of DeviceNet's slave station cyclic communication can reduce unnecessary network traffic

Table 3.29 Explanation of Periodic Mode Parameters

2. Output List

On the DeviceNet Slave List interface, click on the Output List below the DeviceNet Slave name, as shown in Figure 3.33. The output list is a mapping entry list for the output data of the DeviceNet master station relative to the DeviceNet master station.

😰 AWPX Tools							– 🗆 ×
😑 🞯 扫描设备 ∓ 保存配置 📰	: 获取配置 🚽 导入配	こちょう 日本	置 🙀 系统设置 ▼				× ?
目标板	输出列表						添加 +
[00:14:97:0f:00:c0]-192.168.1.136 •	# 变量名	操作单元 10	类型 DeviceNet字节偏移	DeviceNet字节位偏移	寄存器类型	寄存器地址	操作
协议转换类型	1 var	WORD 轮;	j = 2	0 *	保持寄存器	3	■ 删除
PXB-6022DM -							
设备配置							
Modbus设置							
DeviceNet主站参数							
DeviceNet从站列表							
添加从站 🕂 🧻 删除从站							
 ■ 从站_1 输出列表 输入列表 							

Figure 3.33 Output List

Add a mapping entry by clicking the 'Add+' button in the upper right corner of the interface, and then edit the mapping parameters. On the far right side of the entry, click the [Delete] button to delete the mapping entry. The parameter description of the DeviceNet master station output list is shown in Table 3.30.

Table 3.30	Explanation	of Output	List Parameters
14010 5.50	Enplanation	or output	Bibt I didilicters

parameter	Parameter Description
Variable Name	The name of this mapping entry can be used for mnemonic purposes
Operation unit	The size of the mapped data. BYTE: 1 byte, WORD: 2 bytes, DWORD: 4 bytes, QWORD: 8 bytes
IO type	Select the selected I/O connection type
DeviceNet byte offset	Starting from the byte of the I/O output data, map Modbus register data to the I/O output data
DeviceNet byte offset	The bit offset after byte offset is valid when the operation unit is BIT. Namely, starting from the byte and bit of the I/O output data, map Modbus register data to the I/O output data

PXB-60xxD

User Manual for Modbus Protocol

Uesr Manual

Register type	Supports coils, input status, input registers, hold registers, and options related to the [operating unit]
Register address	Read the starting address of the Modbus slave register, which can be decimal or hexadecimal (starting with 0x)

Output list mapping instructions:

Configure an output list mapping entry as shown in Figure 3.33: Configure the operation unit as a WORD, IO type as polling, DeviceNet byte offset as 2, register type as hold register, and register address as 3.

Then PXB-6022DM will first start with address 3 and sequentially read 4 bytes of data from the Modbus slave's hold register (i.e. 2 registers). If PXB-6022DM is running in Modbus master mode, it reads the hold register corresponding to the address of the connected Modbus slave. If PXB-6022DM is running in Modbus slave mode, read the hold register corresponding to the address of PXB-6022DM itself.

Then, according to the byte offset of 2, the read hold register data is sequentially written to the positions of the 2nd, 3rd, 4th, and 5th bytes of the I/O output data. Finally, output the I/O output data to the DeviceNet slave station.

3. Input List

In the 'DeviceNet Slave List' interface, click on the 'Input List' below the DeviceNet Slave name, as shown in Figure 3.34. The input list is a mapping entry list for the input data of the DeviceNet master station relative to the DeviceNet master station.

😢 AWPX Tools							- 🗆 ×
😑 🞯 扫描设备 🗔 保存配置 🔄	🖥 获取配置 🚽 导入配	置 🕘 导出配置	系统设置 ▼				× 0
目标板 [00:14:97:0f:03:ff]-192.168.1.136 *	输入列表 # _{变量名}	操作单元 10类型	DeviceNet字节偏移	DeviceNet字节位偏移	寄存器类型	寄存器地址	添加 十 操作
协议转换类型 PXB-6022DM ▼	1 var	DWORÐ 轮询▼	3	0 -	保持寄存器	7	
设备配置 Modbus设置 DeviceNet主站参数 DeviceNet从站列表 添加从站 十 ● 副总从站 ▼ □ 从站_1 输出列表 输入列表							

Figure 3.34 Input List

Add a mapping entry by clicking the 'Add+' button in the upper right corner of the interface, and then edit the mapping parameters. On the far right side of the entry, click the [Delete] button to delete the mapping entry.

The parameter description of the DeviceNet master station input list is shown in Table 3.31.

Parameter Description
The name of this mapping entry can be used for mnemonic purposes
The size of the mapped data. BYTE: 1 byte, WORD: 2 bytes, DWORD: 4 bytes, QWORD:8 bytes
Select the selected I/O connection type
Starting from the byte of the I/O input data, map the I/O input data to Modbus registers
The bit offset after byte offset is valid when the operation unit is BIT. Namely, starting from the byte and bit of the I/O input data, map the input I/O data to Modbus registers

Table 3.31 Input List Parameter Description

PXB-60xxD

User Manual for Modbus Protocol

Register type	Supports coils, input status, input registers, hold registers, and options related to the [operating unit]
Register address	Write the I/O data input from DeviceNet to the starting address of the Modbus slave register in sequence

Input list mapping instructions:

Configure an input list mapping entry as shown in Figure 3.34: Configure the operation unit as a WORD, IO type as polling, DeviceNet byte offset as 3, register type as hold register, and register address as 7.

Firstly, after receiving the I/O data input from the DeviceNet slave station, PXB-6022DM writes the 3rd, 4th, 5th, and 6th bytes of the I/O input data into the Modbus slave station's hold register (i.e., the hold registers for addresses 7 and 8) starting from address 7, based on byte offset 3. If PXB-6022DM is running in Modbus master mode, write to the hold register corresponding to the address of the connected Modbus slave. If PXB-6022DM is running in Modbus slave mode, write it to the hold register corresponding to the address of PXB-6022DM itself.

3.2.6 PXB-6030D Parameter Settings

1. Basic settings

Click on 'Basic Settings' in the' Device Configuration 'column of the AWPX software to select the working mode and configure the transition timeout. The configuration interface has a connection diagram corresponding to the working mode, as shown in Figure 3.35.

Figure 3.35 Basic Settings

PXB-6030D supports four working modes, which can be selected through the "Working Mode" drop-down list box. Next, we will introduce these four working modes.

1. Modbus RTU master to TCP slave

This mode PXB-6030D enables bidirectional communication between Modbus RTU master devices and Modbus TCP slave devices. Firstly, the Modbus RTU master device sends a request frame, which is received by PXB-6030D. The request frame is then converted and sent to the Modbus TCP slave device. Afterwards, the Modbus TCP slave device responds by replying with a response frame. The PXB-6030D receives the response frame, converts it, and sends it to the Modbus RTU master device. The data flow direction is: $(1 \rightarrow (2) \rightarrow (3) \rightarrow (4))$.

The wiring method is: Connect the RS485 interface of PXB-6030D to the Modbus RTU

Uesr Manual

master device, and connect the Ethernet port to Modbus TCP slave device connection, supporting up to 8 Modbus TCP slave devices. The connection diagram is shown in Figure 3.36.

Figure 3.36 Schematic diagram of Modbus RTU master to TCP slave mode connection

2. TCP master to Modbus RTU slave

This mode PXB-6030D enables bidirectional communication between Modbus TCP master devices and Modbus RTU slave devices. Firstly, the Modbus TCP master sends request frames, and the PXB-6030D receives the request frames, which are then converted and sent to the Modbus RTU slave devices. Afterwards, the Modbus RTU slave device responds with a reply frame, and the PXB-6030D receives the response frame, converts it, and sends it to the Modbus TCP master device. The data flow direction is: $(1) \rightarrow (2) \rightarrow (3) \rightarrow (4)$.

The wiring method is as follows: the Ethernet port of PXB-6030D is connected to the Modbus TCP master device, and the RS485 interface is connected to the Modbus RTU slave device, supporting up to 255 Modbus RTU slave devices. The connection diagram is shown in Figure 3.37.

Figure 3.37 Schematic diagram of TCP master to Modbus RTU slave mode connection

3. ASCII master to TCP slave

The wiring method is: Connect the RS485 interface of PXB-6030D to the Modbus ASCII master device, and connect the Ethernet port to Modbus TCP slave device connection, supporting up to 8 Modbus TCP slave devices. The connection diagram is shown in Figure 3.38.

Figure 3.38 Schematic diagram of ASCII master to TCP slave mode connection

4. TCP master to ASCII slave

This mode PXB-6030D enables bidirectional communication between Modbus TCP master devices and Modbus ASCII slave devices. Firstly, the Modbus TCP master sends request frames, and the PXB-6030D receives the request frames, which are then converted and sent to the Modbus ASCII slave devices. Afterwards, the Modbus ASCII slave device responds with a reply frame, and the PXB-6030D receives the response frame, converts it, and sends it to the Modbus TCP master device. The data flow direction is: $(1 \rightarrow (2) \rightarrow (3) \rightarrow (4)$.

The wiring method is as follows: the Ethernet port of PXB-6030D is connected to the Modbus TCP master device, and the RS485 interface is connected to the Modbus ASCII slave device, supporting up to 255 Modbus ASCII slave devices. The connection diagram is shown in Figure 3.39.

Figure 3.39 Schematic diagram of TCP master to ASCII slave mode connection

Conversion timeout: Taking PXB-6030D running Modbus RTU master to TCP slave mode as an example, when PXB-6030D receives a command from an external Modbus RTU master device, it starts timing. Within the conversion timeout, if PXB-6030D receives a correct response from the external TCP slave device, it will complete the protocol conversion. Otherwise, PXB-6030D will not respond to this Modbus RTU master command. The same applies to other modes.

PXB-6030D supports Modbus function codes as shown in Table 3.32 in any working mode.

Function code	function
01H	Read coil status
02H	Read input status
03H	Read and hold register
04H	Read input register
05H	Write a single coil
06H	Write a single hold register
0FH	Write multiple coils
10H	Write multiple hold registers

2. RS485 parameters

Click on "RS485 Parameters" in the "Device Configuration" column of AWPX software to set the PXB-6030D device RTU/ASCII communication parameters. The interface is shown in Figure 3.40.

目标板		
[00:14:97:0f:00:c0]-192.168.1.136 •	波特率 115200	.*
议转换类型		
PXB-6030D -	数据位 8	•
备配置	停止位	
基本设置	1	*
RS485参数	校验位	*
TCP从站信息	None	
	终端电阻使能 使能	

Figure 3.40 RS485 Parameter Interface

The RS485 parameter is the RTU/ASCII communication parameter of the PXB-6030D device, which needs to be consistent with the communication parameter settings of the external Modbus RTU/ASCII device. The maximum baud rate can be set to 2M. Enable RS485 terminal resistors through the 'Terminal Resistance Enable' option.

3. TCP Slave Information

Click on 'TCP Slave Information' in the 'Device Configuration' column of AWPX software to configure TCP slave information. When selecting different working modes, the interface for "TCP Slave Information" is different. When selecting the working mode of Modbus RTU master to TCP slave or ASCII master to TCP slave, the "TCP Slave Information" interface is shown in Figure 3.41.

& AWPX Tools									- 0	×
😑 💿 扫描设备 🛛 🐺 保存配置 📑	₣ 获取配置	-] ₹	入配置	🗗 导出配置 🛛 🙀 🧗	系统设置 🔻				Â	0
目标板		使能/	禁能	IP地址	端口号	从站ID	UID	重连时间(ms)	保活时间(s)	
[00:14:97:0f:00:c0]-192.168.1.136 *	1	使能	*	192.168.1.10	502	1	0	1000	10	
协议转换类型	2	禁能	*	192.168.1.10	502	2	0	1000	10	
PXB-6030D -	3	禁能	-	192.168.1.10	502	3	0	1000	10	
设备配置										
基本设置	4	禁能	*	192.168.1.10	502	4	0	1000	10	
RS485参数	5	禁能	*	192.168.1.10	502	5	0	1000	10	
TCP从站信息	6	禁能	*	192.168.1.10	502	6	0	1000	10	
	7	禁能	*	192.168.1.10	502	7	0	1000	10	
	8	禁能	*	192,168,1,10	502	8	0	1000	10	

Figure 3.41 TCP Slave Information Interface 1

When selecting the working mode of Modbus RTU master to TCP slave or ASCII master to TCP slave, this interface can set the information of the TCP slave that 8 PXB-6030D devices need to connect to. The parameter description of this interface is shown in Table 3.33.

parameter	Parameter Description
Enable/Disable	Enable or disable the setting for this TCP slave information
IP address	The IP address of the TCP slave station that the PXB-6030D device needs to connect to
Port number	The port number of the TCP slave station that the PXB-6030D device needs to connect to
Slave ID	When the Modbus RTU/ASCII master sends a request frame for this slave ID, it will be sent to this TCP slave
	When UID is set to 0, the slave ID will be set to UID and sent to the
UID	current slave device; When UID is set to>0, set this value as the frame
	UID and send it to the current slave device
Reconnect time	When PXB-6030D fails to establish a TCP connection or disconnects from a TCP slave, PXB-6030D reconnects with TCP
	The time interval for establishing a TCP connection from a slave station until PXB- 6030D successfully connects to the TCP slave station
Survival time	TCP connection heartbeat detection time, used for disconnection detection. If the heartbeat response exceeds the keep alive time, PXB-6030D
	Disconnect the current TCP connection and reconnect based on the reconnection time

Table 3.33 TCP Slave Information Parameter Explanation 1

Note: UID is the unit identifier in Modbus TCP packets, which serves as the identification code for Modbus TCP slave devices and is consistent with the Modbus slave ID commonly used on Modbus serial links.

Example of using slave ID and UID: Taking PXB-6030D running Modbus RTU master to TCP slave as an example, connect two external TCP slaves. The IP address of TCP slave 1 is 192.168.1.10, and the IP address of TCP slave 2 is: 192.168.1.118. Configure TCP slave information as shown in Figure 3.42.

😰 AWPX Tools									- 0	\times
😑 🞯 扫描设备 ∓ 保存配置	→ 获取配置	t -) t	入配置	🗗 导出配置 🛛 🙀 新	《统设置 👻				玆	0
目标板	"	使能/	禁能	IP地址	端口号	从站ID	UID	重连时间(ms)	保活时间(s)	
[00:14:97:0f:00:c0]-192.168.1.136 •	1	使能	*	192.168.1.10	502	1	7	1000	10	
协议转换类型	2	使能	-	192.168.1.118	502	2	0	1000	10	
PXB-6030D -	3	禁能	*	192.168.1.10	502	3	0	1000	10	
设备配置 基本设置	4	禁能	•	192.168.1.10	502	4	0	1000	10	
RS485参数	5	禁能	•	192.168.1.10	502	5	0	1000	10	
TCP从站信息	6	禁能	×	192.168.1.10	502	6	0	1000	10	

Figure 3.42 Example configuration of using slave ID and UID

The slave ID and UID settings for two TCP slave stations are shown in the above figure.

When the Modbus RTU master sends request frame 1:01 03 00 00 02 C4 0B and request frame 2:02 03 00 00 02 C4 38. Then PXB-6030D will change the slave ID in request frame 1 from 01 to 07, and after conversion, send it to TCP slave 1. Finally, replace the ID in the response frame from TCP slave 1 with 01 and send it to the Modbus RTU master. And without making any changes to request frame 2, after conversion, it is sent to TCP slave 2.

When selecting the working mode of TCP master to Modbus RTU slave or TCP master to ASCII slave, the interface of "TCP slave information" is shown in Figure 3.43.

PXB-60xxD User Manual for Modbus Protocol

S AWPX TOOIS					
三 😡 扫描设备 🛛 🐺 保存配置	₩ 获取配置	こ 🚽 🗟 🖓 与入配置	🔁 导出配置	_✿ 系统设置	•
目标板					
[00:14:97:0f:00:c0]-192.168.1.136	*	端口号 502			
协议转换类型		2			
PXB-6030D	•	TCP连接保活时间(s) 10			
设备配置		固定从站ID			
基本设置		0			
RS485参数					
TCP从站信息					

Figure 3.43 TCP Slave Information Interface 2

When the PXB-6030D device operates in TCP master to Modbus RTU slave or TCP master to ASCII slave mode, the parameter specifications on this interface are shown in Table 3.34.

Table 3.34 TCP Slave Information Parameter Description 2

parameter	Parameter Description
Port number	Port number of PXB-6030D device
TCP connection keep	TCP connection heartbeat detection time, used for disconnection detection. If the heartbeat response exceeds the keep alive time, PXB-6030D
alive time	Disconnect the current TCP connection and reconnect based on the reconnection time
Fixed slave ID	When set to 0, the UID of the request frame sent by the TCP master station is the ID of the slave station to be accessed;
	When set greater than 0, change the UID of the request frame to the fixed slave ID set here, and then send it to the serial port slave device

3.2.7 PXB-6031D Parameter Configuration

1. Modbus parameter configuration

Click on "Modbus Settings" in the "Device Configuration" column of AWPX software to configure Modbus parameters. The configuration interface is shown in Figure 3.44.

		□♀ 示犹收白 ▼
目标板		
[00:14:97:0f:00:d3]-192.168.18.142 -	工作模式 Modbus RTU主站	
办议转换类型		
PXB-6031D -	波特率 115200	Ŧ
备配置	数据位	
Modbus设置	8	
OPCUA参数	停止位	Ų
OPCUA对象	1	
	校验位 None	•
	终端电阻使能 使能	-

Figure 3.44 Modbus parameter settings

PXB-6031D supports two working modes, which can be selected through the "Working Mode" drop-down list box. Each working mode has corresponding Modbus parameters, and the functional descriptions and corresponding parameter descriptions of these two working modes are shown in Table 3.35.

Table 3.35 Modbus Parameter Description

Working mode	Function Description	Configuration	Configuration item	
		Baud rate		
Modbus RTU master	PXB-6031D works as a	Data bits	RTU communication	
	Modbus RTU master and supports up to 255 Modbus	Stop position	parameters	
	RTU slaves	Checksum		
		Terminal resistance enable	RS485 terminal resistor enable	
Modbus TCP Master	PXB-6031D works as a	Slave IP address	The IP address of the only	
	Modbus TCP master and	Slave port number	The unique TCP slave port	
	serves as a TCP client	Sluve port number	number	

2. OPC UA parameter configuration

Click on 'OPC UA Parameters' in the' Device Configuration 'column of the AWPX software to configure the parameters of the OPC UA server, as shown in Figure 3.45.

目标板	
[00:14:97:0f:00:d3]-192.168.18.142 -	端口号 4840
协议转换类型	
PXB-6031D 👻	根节点名 PXB6031
设备配置	资源路径
Modbus设置	UA/ZLG_Opc_Ua_Server
OPCUA参数	每次操作最大节点数
OPCUA对象	100
	数据更新间隔(ms) 1000
	 允许匿名登录 是 ▼
	用户名
	user
	用户密码

Figure 3.45 OPC UA Parameter Interface

The OPC UA parameter specifications are shown in Table 3.36.

Table 3.36 OPC UA Parameter Description

parameter	Parameter Description
Port number	Set the port number for the OPC UA server
Root node roll call	Set the root node directory name where the OPC UA object is located
Resource Path	Set the resource path for OPC UA server
Maximum number of nodes per operation	Set the maximum number of nodes that the OPC UA server can operate at a time
Data undate interval	Data update interval between OPC UA and Modbus. The smaller the value, the
Data update interval	better the real-time performance. The smaller the value, the higher the
	performance requirements for Modbus bus, which can be filled in according to
	real-time needs
Allow Anonymous Access	Used for access control, optional yes or no. When selecting 'No', the OPC UA
Allow Allollymous Access	client needs to enter the correct username and password to establish a proper
	connection with PXB-6031D. Otherwise, there is no need to enter a username and
	password
user name	Allow anonymous login. When selecting 'No', set the username of the OPC UA server here
User password	Allow anonymous login. When selecting 'No', set the user password for the OPC UA server here

PXB-6031D supports signature or encryption and signature, and supports three data encryption methods: Basic256, Basic256Sha256, and Aes128Shah256RsaOaep. OPC UA clients can choose not to encrypt or select one of these three data encryption methods.

3. OPC UA Object Configuration

PXB-60xxD User Manual for Modbus Protocol

Click on "OPC UA Object" in the "Device Configuration" column of AWPX software, and then click the "Add+" button to create a new OPC UA object. Up to 8 objects can be created. Click the "Delete" button on the right to delete the object. click

The name of the object, as shown in Figure 3.46 as "obj_0", can be used to configure the parameters of the OPC UA object.

AWPX Tools				
三 😡 扫描设备 🛛 🐺 保存配置	😭 获取配置	→ 导入配置	€] 导出配置	系统设置 ▼
1标板				
[00:14:97:0f:00:d3]-192.168.18.142	•	对象名 obj_0		
协议转换类型				
PXB-6031D	-	字交换使能 True		*
设备配置		大小端		•
Modbus设置		13 1988		
OPCUA参数		从机号 1		
OPCUA对象				
添加 十	除			
▼ 📮 obj_0				
变量列表				

Figure 3.46 OPC UA Object Configuration Interface

The parameter specifications of OPC UA objects are shown in Table 3.37.

Table 3.37 Parameter Description of OPC UA Objects

parameter	Parameter Description
Object Name	The name of the OPC UA object, which can be used for mnemonic purposes
Word exchange	When setting the data type for read and write to 32 bits, should the data in these two
Size end	Set the big and small end formats for reading and writing Modbus data
Slave number	Set Modbus Slave ID

Click the 'Variable List' button below the object name to create or delete variables within the object, as shown in Figure 3.47. Click the 'New Variable+' button in the upper right corner to create a new variable within the object. The total number of newly created variables in all objects can reach up to 2000. Click the 'Delete Variable' button to delete the variable.

AWPX Tools												-	□ ×
😑 😳 扫描设备 🛛 幕 保存配置 🖙	获取配置	-→ 导入配置	🔁 导出配置			ï -							× ?
目标板									导入CSV {	Ð	导出CSV ⊡	新建变	≣ +
[00:14:97:0f:02:90]-192.168.1.136 -	H	变量名	数据类	코	寄存器数	读写属性		变换系数	寄存器类型	1	寄存器地址	操作	-
协议转换类型	1	var_0	int16	*	1	写Modbus	*	1	保持寄存器	*	0		安重
PXB-6031D •	2	var_1	uint16	*	1	读写Modbus	*	1	保持寄存器	*	3		建 变量
设备配置													
Modbus设置													
OPCUA参数													
OPCUA对象													
添加 +													
♥ U OD_0 													

© 2024 Guangzhou ZHIYUAN Electronics Co.,

ZLG

Click the 'Export CSV' button to export the configured OPC UA objects and variables Export in table format with CSV suffix. The data format of the table exported from the OPC UA variable configured in Figure 3.47 is shown in Figure 3.48.

The CSV table file can be edited in batches according to the data format shown in Figure 3.48 for OPC UA objects and variables. After editing, click the [Import CSV] button to import into AWPX software.

A	В	С	D	E	F	G	H	1	J	K
obj_0	var_0	int16	1	write	1	3	0	1	little_endia	TRUE
obj_0	var_1	uint16	1	read_write	1	3	3	1	little_endia	TRUE

Figure 3.48 OPC UA Data Format

The parameter descriptions of the OPC UA variables in the variable list are shown in Table 3.38.

parameter	Parameter Description
Variable Name	The name of OPC UA variable, which can be used for mnemonic purposes
data type	Data types for reading and writing Modbus data
Number of registers	Specify the number of Modbu slave registers for reading and writing, with data type hexstr ascstr, u16_array, i16_array Can be set with boor_array, up to a maximum of 96
Read and write properties	Set read-write Modbus slave, which can be set as read-only, write only, or read-write Modbus
Transformation coefficient	The value of Modbus data multiplied by the variable coefficient is the value of OPC UA variable data, which can be set when the data type is float
Register type	Set the type of Modbus register for reading and writing
Register address	Set the starting address of the Modbus register for reading and writing, which can be entered in decimal or hexadecimal format (starting with 0x)

Table 3.38 OPC UA Parameter Description

Addendum:

[Data Type]: hexstr is a string of hex type, supporting characters from '0' to '9', 'a' to 'f', and 'A' to 'F'. Determine the string length by setting the number of registers, where one register corresponds to four characters. Ascstr is an ASCII code type string that supports ASCII encoded characters.

u16_array is a Uint16 array type, and the number of members in the Uint16 array is determined by setting the 'number of registers'. One register corresponds to one array member. I16uarray and boolean array are of type int16 and boolean, respectively, with the same correspondence as above. The corresponding array or string can be operated on the OPC UA client.

Read and write properties: Read and write properties are relative to OPC UA clients. If set to 'Write Modbus', only the value of OPC UA variables can be set in the OPC UA client, and then PXB-6031D writes the value to the corresponding Modbus register at the address.

[Word Swap Enable]: One register in Modbus is 2 bytes, or 16 bits. In AWPX software, there are 32 bit data types including int32, uint32, and float32. Assuming the data type is int32 and registers A and B are adjacent addresses. When the word swap setting is not enabled, the data written to register A is 0x1234, and the data written to register B is 0x5678. Enable word swapping and write the same data. The data written to register A becomes 0x5678, and the data written to register B becomes 0x1234. The same applies when reading registers.

4. Product installation

4.1 Mechanical dimensions

PXB-60xxD series product dimensions: 125mm * 76mm * 28mm.

Figure 4.1 Product Dimensional Diagram

5. Product maintenance and precautions

Before powering on the product, please check if the power input voltage is within the required range, if the product wiring is reasonable, and if there are any short circuits or incorrect signal lines;

The product does not have IP protection level requirements and needs to be protected from water ingress, which may affect the normal operation of the product;

6. Appendix

6.1 Product Packing List

Serial number	name	quantity	Company	Physical picture
1	PXB-60xxD protocol converter	one	platform	
2	3P power terminal	one	only	
3	6P terminal	one	only	
4	certificate	one	Zhang	こしに 合格证 ^{检验工号: 企 ^{广州致远电子服份有限公司}}

7. Disclaimer

In accordance with the principle of providing better services to users, Guangzhou Zhiyuan Electronics Co., Ltd. (hereinafter referred to as "Zhiyuan Electronics") will present detailed and accurate product information to users as much as possible in this manual. However, due to the timeliness of the content in this manual, Zhiyuan Electronics cannot fully guarantee the timeliness and applicability of this document at any time. Zhiyuan Electronics reserves the right to update the content of this manual without prior notice. To obtain the latest version of information, please visit the official website of Zhiyuan Electronics regularly or contact Zhiyuan Electronics staff. Thank you for your tolerance and support!

Integrity and win-win, continuous learning, customer first, professional focus, only do first

Guangzhou Zhiyuan Electronics Co., Ltd For more details, please visit

Welcome to call the national serv 400-888-4005

www.zlg.cn