EsDA系列
MPC-ZC1迷你工控主板
Cortex®-A5,拖拽式开发,40pin扩展引脚
2.5寸工控单板
EPC-6Y2C-L网络控制器
Cortex®-A7,800MHz,8路串口,数字音频
IoT-6Y2C-L物联网关控制器
Cortex®-A7,800MHz,8路串口,支持蓝牙
EPC-6G2C-L网络控制器
Cortex®-A7,528MHz,8路串口,数字音频
IoT-6G2C-L物联网关控制器
Cortex®-A7,528MHz,8路串口,支持蓝牙
3.5寸工控单板
IoT7000A-LI物联网网关控制器
Cortex®-A7,双MiniPCIe接口支持无线模块扩展
IoT-9608I-L网络控制器
Cortex®-A8,800MHz,6种无线通讯方式
EPC-9600I-L工控主板
Cortex®-A8,800Mhz
IoT9000A-LI工控主板
Cortex®-A9,强劲编解码,专注多媒体
IoT9100A-LI工业IoT网络控制器Cortex®-A9,1GHz
SX-3568系列主板Cortex®-A55,双核心GPU
MD-3568LI工控板Cortex®-A55,双网口
智能主机
DCP-3000L
基于TI AM3354 处理器开发的直流充电桩计费控制单元
DCP-5000L
一款搭载Cortex®-A9双核处理器的工业多媒体控制主机
EPCM5300A-LI
支持扩展18串口或6路千兆网口的柔性扩展工控机
EPCM3568B-LI/EPCM3568C-LI
基于RK3568处理器开发的5G工业物联网智能边缘计算网关
EPCM3568A-LI
基于RK3568处理器开发的小型高性能边缘计算网关
显控终端
TKM系列显控一体机
AWTK,电阻屏电容屏可选,528MHz
DCP-1000L
一款搭载Cortex®-A7处理器的工业显控一体机

晶体一秒变晶振,成本直降60%!

晶体和晶振

通常,我们会将“晶体”(Crystal)和“晶振”(Oscillator)都叫成“晶振”,这种叫法并不恰当。

无源晶体是有两个引脚的无极性元件,如图1(a)。正常工作时,需要借助外部电路产生振荡信号,自身并不需要单独外加电源。

图1 晶体和晶振

而有源晶振一般有四个引脚,如图1(b),其内部集成石英晶体、晶体管、电阻电容等元件。晶振是一个完整的振荡器,只需要外加适当电源就能正常工作,无需其他外加电路。

成本分析

在设计时,工程师要尽可能的降低设计成本,从表1中看出这种晶体转晶振的电路可以使晶振的成本降低60%。

晶振电路 元件 价格 晶振总价
有源晶振电路 有源晶振 4元左右 4元左右
无源晶体转有源晶振电路 无源晶体 0.8元左右 2.3元左右
无缓冲反相器 0.5元左右
电阻、电容 0.1元左右
表1 价格对比
晶体变晶振

采用晶体外加无缓冲反相器等元件组成晶振电路,原理及元件如图2。

图2 无缓冲反相器和晶体组成的晶振电路

电路中电阻和电容的选择取决于反向器增益、频率稳定性、功耗、晶体特性和启动时间等,推荐参数如表2。

表2 参数选择

U1:增加U1B主要是为了增大输出能力。无缓冲反相器的型号可以选择NXP、ON、TI等厂家的双反相器芯片。

RF:反向器的反馈电阻,它将反向器偏置在线性区域内。选择的RF值需要足够大,以便反向器的输入阻抗可以与晶体匹配。通常情况下,选择的值在1MΩ与10MΩ之间。

RS:将反向器的输出与晶体隔离开来,防止寄生高频振荡,以便获得良好的波形。通过选择大约等于容抗的值(RS≈XC2)可以获得可以接受的结果。

C1、C2:选择C1和C2的值时,要使C1和C2的并联值等于晶体数据表中指定的建议负载电容 (CL)。另外,电容的选择还关系到晶振的启动时间、相移、谐振频率等。

参数测试

测试电路时,我们选用了三种不同频率的晶体(见表3)和三个厂家的无缓冲反相器进行组合测试,测试结果见表4。

标称频率 16.00MHz 24.00MHz 27.12MHz
负载电容 20pF 20pF 20pF
调整频差 ±30 ppm ±30 ppm ±30 ppm
工作温度 -20℃~+70℃ -20℃~+70℃ -20℃~+70℃
温度频差 ±30 ppm ±30 ppm ±30 ppm
表3 晶体参数
反相器型号 标称频率 测试频率(MHz)
NL27WZU04(ON) 24.00MHz 23.999529~23.999535
NL27WZU04(ON) 27.12MHz 27.120630~270120635
74HC2G104(NXP) 16.00MHz 16.000111~16.000114
74HC2G104(NXP) 24.00MHz 23.998941~23.998946
SN74LVC1GX04(TI) 16.00MHz 16.000033~16.000036
SN74LVC1GX04(TI) 27.12MHz 27.120341~27.120345
表4 多种电路的测试统计

频率:由晶振的调整频差(25℃±2℃)可以知道,晶体频率在其容忍频率范围内变动是允许的。表4中的测试频率均在允许范围内,并且变动范围较小。

高低温测试:根据晶体的工作温度,分别测试和记录了电路在85℃、70℃、50℃、25℃、0℃、-20℃、-40℃下的输出频率、占空比等参数,晶振均能顺利启振并参数正常。由于数据较多,篇幅有限,这里就不再列举。

结论

利用无源晶体的有源晶振不仅技术上可行,而且可以降低成本。

应用场合

TI在2011年针对工业控制领域推出了低成本,高性能的Cortex®-A8内核AM335x系列处理器,致远电子采用AM335x处理器,推出了采用邮票孔封装的M3352_YP核心板以满足客户高稳定性的需求。

图3 M3352邮票孔核心板

当客户M3352_YP做外围电路时,如需要使用百兆以太网功能,需要外加PHY电路,PHY芯片通常可以选择DSZ8041或者DP83848,在使用RMII接口时,无论选择何种型号的PHY芯片,都需要为PHY芯片提供一路50MHz的CLK信号。为了降低成本可以采用50.000M晶体+NL27WZU04的方式为PHY提供50.000M的时钟源。

图4 无源晶体做有源晶振典型应用电路